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Momentum, Work and Energy  

Michael Fowler, U.  Va.  Physics, 11/29/07 

Momentum  

At this point, we introduce some further concepts that will prove useful in describing 
motion.  The first of these, momentum, was actually introduced by the French scientist 
and philosopher Descartes before Newton.  Descartes’ idea is best understood by 
considering a simple example: think first about someone (weighing say 45 kg) standing 
motionless on high quality (frictionless) rollerskates on a level smooth floor.  A 5 kg 
medicine ball is thrown directly at her by someone standing in front of her, and only a 
short distance away, so that we can take the ball’s flight to be close to horizontal.  She 
catches and holds it, and because of its impact begins to roll backwards.  Notice we’ve 
chosen her weight so that, conveniently, she plus the ball weigh just ten times what the 
ball weighs by itself.  What is found on doing this experiment carefully is that after the 
catch, she plus the ball roll backwards at just one-tenth the speed the ball was moving just 
before she caught it, so if the ball was thrown at 5 meters per second, she will roll 
backwards at one-half meter per second after the catch.  It is tempting to conclude that 
the “total amount of motion” is the same before and after her catching the ball, since we 
end up with ten times the mass moving at one-tenth the speed.   

Considerations and experiments like this led Descartes to invent the concept of 
“momentum”, meaning “amount of motion”, and to state that for a moving body the 
momentum was just the product of the mass of the body and its speed.  Momentum is 
traditionally labeled by the letter p, so his definition was:  

momentum = p = mv  

for a body having mass m and moving at speed v.  It is then obvious that in the above 
scenario of the woman catching the medicine ball, total “momentum” is the same before 
and after the catch.  Initially, only the ball had momentum, an amount 5x5 = 25 in 
suitable units, since its mass is 5kg and its speed is 5 meters per second.  After the catch, 
there is a total mass of 50kg moving at a speed of 0.5 meters per second, so the final 
momentum is 0.5x50 = 25, the total final amount is equal to the total initial amount.  We 
have just invented these figures, of course, but they reflect what is observed 
experimentally.   

There is however a problem here—obviously one can imagine collisions in which the 
“total amount of motion”, as defined above, is definitely not the same before and after.  
What about two people on rollerskates, of equal weight, coming directly towards each 
other at equal but opposite velocities—and when they meet they put their hands together 
and come to a complete halt?  Clearly in this situation there was plenty of motion before 
the collision and none afterwards, so the “total amount of motion” definitely doesn’t stay 
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the same! In physics language, it is “not conserved”.  Descartes was hung up on this 
problem a long time, but was rescued by a Dutchman, Christian Huygens, who pointed 
out that the problem could be solved in a consistent fashion if one did not insist that the 
“quantity of motion” be positive.   

In other words, if something moving to the right was taken to have positive momentum, 
then one should consider something moving to the left to have negative momentum.  With 
this convention, two people of equal mass coming together from opposite directions at 
the same speed would have total momentum zero, so if they came to a complete halt after 
meeting, as described above, the total momentum before the collision would be the same 
as the total after—that is, zero—and momentum would be conserved.   

Of course, in the discussion above we are restricting ourselves to motions along a single 
line.  It should be apparent that to get a definition of momentum that is conserved in 
collisions what Huygens really did was to tell Descartes he should replace speed by 
velocity in his definition of momentum.  It is a natural extension of this notion to think of 
momentum as defined by  

momentum = mass x velocity  

in general, so, since velocity is a vector, momentum is also a vector, pointing in the same 
direction as the velocity, of course.   

It turns out experimentally that in any collision between two objects (where no 
interaction with third objects, such as surfaces, interferes), the total momentum before the 
collision is the same as the total momentum after the collision.  It doesn’t matter if the 
two objects stick together on colliding or bounce off, or what kind of forces they exert on 
each other, so conservation of momentum is a very general rule, quite independent of 
details of the collision.   

Momentum Conservation and Newton’s Laws  

As we have discussed above, Descartes introduced the concept of momentum, and the 
general principle of conservation of momentum in collisions, before Newton’s time.  
However, it turns out that conservation of momentum can be deduced from Newton’s 
laws.  Newton’s laws in principle fully describe all collision-type phenomena, and 
therefore must contain momentum conservation.   

To understand how this comes about, consider first Newton’s Second Law relating the 
acceleration a of a body of mass m with an external force F acting on it:  

F = ma, or force = mass x acceleration  

Recall that acceleration is rate of change of velocity, so we can rewrite the Second Law:  

force = mass x rate of change of velocity.   
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Now, the momentum is mv, mass x velocity.  This means for an object having constant 
mass (which is almost always the case, of course!)  

rate of change of momentum = mass x rate of change of velocity.   

This means that Newton’s Second Law can be rewritten:  

force = rate of change of momentum.   

Now think of a collision, or any kind of interaction, between two objects A and B, say.  
From Newton’s Third Law, the force A feels from B is of equal magnitude to the force B 
feels from A, but in the opposite direction.  Since (as we have just shown) force = rate of 
change of momentum, it follows that throughout the interaction process the rate of 
change of momentum of A is exactly opposite to the rate of change of momentum of B.  
In other words, since these are vectors, they are of equal length but pointing in opposite 
directions.  This means that for every bit of momentum A gains, B gains the negative of 
that.  In other words, B loses momentum at exactly the rate A gains momentum so their 
total momentum remains the same.  But this is true throughout the interaction process, 
from beginning to end.  Therefore, the total momentum at the end must be what it was at 
the beginning.   

You may be thinking at this point: so what?  We already know that Newton’s laws are 
obeyed throughout, so why dwell on one special consequence of them?  The answer is 
that although we know Newton’s laws are obeyed, this may not be much use to us in an 
actual case of two complicated objects colliding, because we may not be able to figure 
out what the forces are.  Nevertheless, we do know that momentum will be conserved 
anyway, so if, for example, the two objects stick together, and no bits fly off, we can find 
their final velocity just from momentum conservation, without knowing any details of the 
collision.   

Work  

The word “work” as used in physics has a narrower meaning than it does in everyday life.  
First, it only refers to physical work, of course, and second, something has to be 
accomplished.  If you lift up a box of books from the floor and put it on a shelf, you’ve 
done work, as defined in physics, if the box is too heavy and you tug at it until you’re 
worn out but it doesn’t move, that doesn’t count as work.   

Technically, work is done when a force pushes something and the object moves some 
distance in the direction it’s being pushed (pulled is ok, too).  Consider lifting the box of 
books to a high shelf.  If you lift the box at a steady speed, the force you are exerting is 
just balancing off gravity, the weight of the box, otherwise the box would be accelerating.  
(Of course, initially you’d have to exert a little bit more force to get it going, and then at 
the end a little less, as the box comes to rest at the height of the shelf.)  It’s obvious that 
you will have to do twice as much work to raise a box of twice the weight, so the work 
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done is proportional to the force you exert.  It’s also clear that the work done depends on 
how high the shelf is.  Putting these together, the definition of work is:  

work = force x distance  

where only distance traveled in the direction the force is pushing counts.  With this 
definition, carrying the box of books across the room from one shelf to another of equal 
height doesn’t count as work, because even though your arms have to exert a force 
upwards to keep the box from falling to the floor, you do not move the box in the 
direction of that force, that is, upwards.   

To get a more quantitative idea of how much work is being done, we need to have some 
units to measure work.  Defining work as force x distance, as usual we will measure 
distance in meters, but we haven’t so far talked about units for force.  The simplest way 
to think of a unit of force is in terms of Newton’s Second Law, force = mass x 
acceleration.  The natural “unit force” would be that force which, pushing a unit mass 
(one kilogram) with no friction of other forces present, accelerates the mass at one meter 
per second per second, so after two seconds the mass is moving at two meters per second, 
etc.  This unit of force is called one newton (as we discussed in an earlier lecture).  Note 
that a one kilogram mass, when dropped, accelerates downwards at ten meters per second 
per second.  This means that its weight, its gravitational attraction towards the earth, must 
be equal to ten newtons.  From this we can figure out that a one newton force equals the 
weight of 100 grams, just less than a quarter of a pound, a stick of butter.   

The downward acceleration of a freely falling object, ten meters per second per second, is 
often written g for short.  (To be precise, g = 9.8 meters per second per second, and in 
fact varies somewhat over the earth’s surface, but this adds complication without 
illumination, so we shall always take it to be 10.) If we have a mass of m kilograms, say, 
we know its weight will accelerate it at g if it’s dropped, so its weight is a force of 
magnitude mg, from Newton’s Second Law.   

Now back to work.  Since work is force x distance, the natural “unit of work” would be 
the work done be a force of one newton pushing a distance of one meter.  In other words 
(approximately) lifting a stick of butter three feet.  This unit of work is called one joule, 
in honor of an English brewer.   

Finally, it is useful to have a unit for rate of working, also called “power”.  The natural 
unit of “rate of working” is manifestly one joule per second, and this is called one watt.  
To get some feeling for rate of work, consider walking upstairs.  A typical step is eight 
inches, or one-fifth of a meter, so you will gain altitude at, say, two-fifths of a meter per 
second.  Your weight is, say (put in your own weight here!) 70 kg. (for me) multiplied by 
10 to get it in newtons, so it’s 700 newtons.  The rate of working then is 700 x 2/5, or 280 
watts.  Most people can’t work at that rate for very long.  A common English unit of 
power is the horsepower, which is 746 watts.   
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Energy  

Energy is the ability to do work.   

For example, it takes work to drive a nail into a piece of wood—a force has to push the 
nail a certain distance, against the resistance of the wood.  A moving hammer, hitting the 
nail, can drive it in.  A stationary hammer placed on the nail does nothing.  The moving 
hammer has energy—the ability to drive the nail in—because it’s moving.  This hammer 
energy is called “kinetic energy”.  Kinetic is just the Greek word for motion, it’s the root 
word for cinema, meaning movies.   

Another way to drive the nail in, if you have a good aim, might be to simply drop the 
hammer onto the nail from some suitable height.  By the time the hammer reaches the 
nail, it will have kinetic energy.  It has this energy, of course, because the force of gravity 
(its weight) accelerated it as it came down.  But this energy didn’t come from nowhere.  
Work had to be done in the first place to lift the hammer to the height from which it was 
dropped onto the nail.  In fact, the work done in the initial lifting, force x distance, is just 
the weight of the hammer multiplied by the distance it is raised, in joules.  But this is 
exactly the same amount of work as gravity does on the hammer in speeding it up during 
its fall onto the nail.  Therefore, while the hammer is at the top, waiting to be dropped, it 
can be thought of as storing the work that was done in lifting it, which is ready to be 
released at any time.  This “stored work” is called potential energy, since it has the 
potential of being transformed into kinetic energy just by releasing the hammer.   

To give an example, suppose we have a hammer of mass 2 kg, and we lift it up through 5 
meters.  The hammer’s weight, the force of gravity, is 20 newtons (recall it would 
accelerate at 10 meters per second per second under gravity, like anything else) so the 
work done in lifting it is force x distance = 20 x 5 = 100 joules, since lifting it at a steady 
speed requires a lifting force that just balances the weight.  This 100 joules is now stored 
ready for use, that is, it is potential energy.  Upon releasing the hammer, the potential 
energy becomes kinetic energy—the force of gravity pulls the hammer downwards 
through the same distance the hammer was originally raised upwards, so since it’s a force 
of the same size as the original lifting force, the work done on the hammer by gravity in 
giving it motion is the same as the work done previously in lifting it, so as it hits the nail 
it has a kinetic energy of 100 joules.  We say that the potential energy is transformed into 
kinetic energy, which is then spent driving in the nail.   

We should emphasize that both energy and work are measured in the same units, joules.  
In the example above, doing work by lifting just adds energy to a body, so-called 
potential energy, equal to the amount of work done.   

From the above discussion, a mass of m kilograms has a weight of mg newtons.  It 
follows that the work needed to raise it through a height h meters is force x distance, that 
is, weight x height, or mgh joules.  This is the potential energy.   



 6

Historically, this was the way energy was stored to drive clocks.  Large weights were 
raised once a week and as they gradually fell, the released energy turned the wheels and, 
by a sequence of ingenious devices, kept the pendulum swinging.  The problem was that 
this necessitated rather large clocks to get a sufficient vertical drop to store enough 
energy, so spring-driven clocks became more popular when they were developed.  A 
compressed spring is just another way of storing energy.  It takes work to compress a 
spring, but (apart from small frictional effects) all that work is released as the spring 
uncoils or springs back.  The stored energy in the compressed spring is often called 
elastic potential energy, as opposed to the gravitational potential energy of the raised 
weight.   

Kinetic Energy  

We’ve given above an explicit way to find the potential energy increase of a mass m 
when it’s lifted through a height h, it’s just the work done by the force that raised it, force 
x distance = weight x height = mgh.   

Kinetic energy is created when a force does work accelerating a mass and increases its 
speed.  Just as for potential energy, we can find the kinetic energy created by figuring out 
how much work the force does in speeding up the body.   

Remember that a force only does work if the body the force is acting on moves in the 
direction of the force.  For example, for a satellite going in a circular orbit around the 
earth, the force of gravity is constantly accelerating the body downwards, but it never 
gets any closer to sea level, it just swings around.  Thus the body does not actually move 
any distance in the direction gravity’s pulling it, and in this case gravity does no work on 
the body.   

Consider, in contrast, the work the force of gravity does on a stone that is simply dropped 
from a cliff.  Let’s be specific and suppose it’s a one kilogram stone, so the force of 
gravity is ten newtons downwards.  In one second, the stone will be moving at ten meters 
per second, and will have dropped five meters.  The work done at this point by gravity is 
force x distance = 10 newtons x 5 meters = 50 joules, so this is the kinetic energy of a one 
kilogram mass going at 10 meters per second.  How does the kinetic energy increase with 
speed? Think about the situation after 2 seconds.  The mass has now increased in speed to 
twenty meters per second.  It has fallen a total distance of twenty meters (average speed 
10 meters per second x time elapsed of 2 seconds).  So the work done by the force of 
gravity in accelerating the mass over the first two seconds is force x distance = 10 
newtons x 20 meters = 200 joules.   

So we find that the kinetic energy of a one kilogram mass moving at 10 meters per 
second is 50 joules, moving at 20 meters per second it’s 200 joules.  It’s not difficult to 
check that after three seconds, when the mass is moving at 30 meters per second, the 
kinetic energy is 450 joules.  The essential point is that the speed increases linearly with 
time, but the work done by the constant gravitational force depends on how far the stone 
has dropped, and that goes as the square of the time.  Therefore, the kinetic energy of the 
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falling stone depends on the square of the time, and that’s the same as depending on the 
square of the velocity.  For stones of different masses, the kinetic energy at the same 
speed will be proportional to the mass (since weight is proportional to mass, and the work 
done by gravity is proportional to the weight), so using the figures we worked out above 
for a one kilogram mass, we can conclude that for a mass of m kilograms moving at a 
speed v the kinetic energy must be:  

kinetic energy = ½mv²  

Exercises for the reader:  both momentum and kinetic energy are in some sense measures 
of the amount of motion of a body.  How do they differ?  

Can a body change in momentum without changing in kinetic energy?  

Can a body change in kinetic energy without changing in momentum?  

Suppose two lumps of clay of equal mass traveling in opposite directions at the same 
speed collide head-on and stick to each other.  Is momentum conserved? Is kinetic energy 
conserved?  

As a stone drops off a cliff, both its potential energy and its kinetic energy continuously 
change.  How are these changes related to each other?  
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