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Basic Ideas in Greek Mathematics 

Michael Fowler UVa Physics Department 

Closing in on the Square Root of 2  

In our earlier discussion of the irrationality of the square root of 2, we presented a list of 
squares of the first 17 integers, and remarked that there were several “near misses” to 
solutions of the equation m2 = 2n2. Specifically, 32 = 2×22 + 1, 72 = 2×52 - 1, 172 = 2×122 
+ 1. These results were also noted by the Greeks, and set down in tabular form as 
follows: 

3  2 
 
7  5 
 
17  12 
 

After staring at this pattern of numbers for a while, the pattern emerges: 3 + 2 = 5 and 7 + 
5 = 12, so the number in the right-hand column, after the first row, is the sum of the two 
numbers in the row above. Furthermore, 2 + 5 = 7 and 5 + 12 = 17, so the number in the 
left-hand column is the sum of the number to its right and the number immediately above 
that one.  

The question is: does this pattern continue? To find out, we use it to find the next pair. 
The right hand number should be 17 + 12 = 29, the left-hand 29 + 12 = 41. Now 412 = 
1681, and 292 = 841, so 412 = 2× 292 - 1. Repeating the process gives 41 + 29 = 70 and 
70 + 29 = 99. It is easy to check that 992 = 2×702 + 1. So 992/702 = 2 + 1/702. In other 
words, the difference between the square root of 2 and the rational number 99/70 is 
approximately of the magnitude 1/702. (You can check this with your calculator).  

The complete pattern is now evident. The recipe for the numbers is given above, and the 
+1’s and -1’s alternate on the right hand side. In fact, the Greeks managed to prove (it can 
be done with elementary algebra) that pairs of numbers can be added indefinitely, and 
their ratio gives a better and better approximation to the square root of 2.  

The essential discovery here is that, although it is established that the square root of 2 is 
not a rational number, we can by the recipe find a rational number as close as you like to 
the square root of two. This is sometimes expressed as “there are rational numbers 
infinitely close to the square root of 2” but that’s not really a helpful way of putting it. 
It’s better to think of a sort of game - you name a small number, say, one millionth, and I 
can find a rational number (using the table above and finding the next few sets of 
numbers) which is within one millionth of the square root of 2. However small a number 
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you name, I can use the recipe above to find a rational that close to the square root of 2. 
Of course, it may take a lifetime, but the method is clear! 

Zeno’s Paradoxes  

Zeno of Elea (495-435 BC) is said to have been a self-taught country boy. He was a 
friend of a well-known philosopher, Parmenides, and visited Athens with him, where he 
perplexed Socrates, among others, with a set of paradoxes. (Plato gives an account of this 
in Parmenides.) We shall look at two of them here.  

Achilles and the Tortoise.  

A two hundred yard race is set up between Achilles, who can run at 10 yards per second, 
and the tortoise, who can run at one yard per second (perhaps rather fast for a tortoise, but 
I’m trying to keep the numbers simple).  

To give the tortoise a chance, he is given a one-hundred yard start.  

Now, when Achilles has covered that first 100 yards, to get to where the tortoise was, the 
tortoise is 10 yards ahead. 

When Achilles has covered that 10 yards, the tortoise is 1 yard ahead.  

When Achilles has covered that 1 yard, the tortoise is 1/10 yard ahead.  

Now, Zeno says, there is no end to this sequence! We can go on forever dividing by 10! 
So, Zeno concludes, Achilles has to cover an infinite number of smaller and smaller 
intervals before he catches the tortoise. But to do an infinite number of things takes an 
infinitely long time - so he’ll never catch up.  

What is wrong with this argument? Try to think it through before you read on! 

The essential point becomes clearer if you figure out how long it takes Achilles to cover 
the sequence of smaller and smaller intervals. He takes 10 seconds to cover the first 100 
yards, 1 second to cover the next 10 yards, 1/10 second for the next yard, 1/100 second 
for the next 1/10 of a yard, and so on. If we write down running totals of time elapsed to 
each of these points we get 10 seconds, 11 seconds, 11.1 seconds, 11.11 seconds and so 
on. It is apparent that the total time elapsed for all the infinite number of smaller and 
smaller intervals is going to be 11.1111111…, with the 1’s going on forever. But this 
recurring decimal, 0.111111… is just 1/9, as you can easily check. 

The essential point is that it is possible to add together an infinite number of time 
intervals and still get a finite result. That means there is a definite time-11 1/9 seconds-at 
which Achilles catches up with the tortoise, and after that instant, he’s passed the tortoise.  
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The Arrow  

Consider the flight of an arrow through the air. Let us divide time up into instants, where 
an instant is an indivisibly small time. Now, during an instant, the arrow can’t move at 
all, because if it did, we could divide up the instant using the changing position of the 
arrow to indicate which bit of the instant we are in.  

However, a finite length of time-like a second-is made up of instants. Therefore, if the 
arrow doesn’t move at all during an instant, it doesn’t move in a sum of instants. Hence, 
it can’t move in one second! 

What’s wrong with this argument? 

Now there certainly is such a thing as an instant of time: for example, if the arrow is in 
the air from time zero to time two seconds, say, then there is one instant at which it has 
been in the air for exactly one second.  

The catch is, there is no way to divide time up into such instants. Imagine the time from 
zero to two seconds represented by a geometric line two inches long on a piece of paper. 
By geometric, I mean an ideal line, not one that’s really a collection of microscopic bits 
of pencil lead, but a true continuous line of the kind the Greeks imagined. Time has that 
kind of continuity-there aren’t little gaps in time (at least, none we’ve found so far). Now 
try to imagine the line made up of instants. You could start by putting dots every 
millionth of a second, say. But then you could imagine putting a million dots between 
each of those pairs of dots, to have a dot every trillionth of a second. And why stop there? 
You could keep on indefinitely with this division. But if you spend the rest of your life on 
this mental exercise, you will never put a dot at the instant corresponding to the time 
being the square root of two! And it has been proved by the mathematicians that there are 
infinitely more irrational numbers than there are rational numbers.  

So there really is no way to divide time up into instants. If you’re still not sure, think 
about the following problem: what’s the next instant after the instant at time equals one 
second?  

Instants and Intervals  

On the other hand, it is obviously useful in analyzing the motion of the arrow to look at 
the motion one bit at a time-in other words, to divide the time up somehow, to get a grip 
on how the arrow’s speed may be varying throughout the flight. So how should we 
proceed? Zeno’s dividing of time into instants was not very easy to understand, as we’ve 
seen. It’s much easier to visualize dividing time into intervals. For example, the two 
seconds the arrow is in the air could be divided into two hundred intervals, each of length 
one-hundredth of a second. Then we could find its average speed in each of those 
intervals by measuring how far it went in the one-hundredth of a second, and multiplying 
by one hundred. That is, if it went two feet in the one-hundredth of a second interval, it 
was traveling at two hundred feet per second during that interval. (Of course, it might not 
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be going at that speed for the whole flight-that’s why we’ve divided it into intervals, so 
that we can monitor the speed the whole time). Of course, if the arrow hits something, it 
will slow down very rapidly-there will be a big change in speed in one hundredth of a 
second. If we want to describe the motion of the arrow in this situation, we must divide 
time up into smaller intervals, say thousandths of a second, or even ten-thousandths of a 
second, depending on how precisely we want to follow the change in speed.  

Speed at an Instant  

There is still a problem here we haven’t quite faced. All this dividing time up into small 
intervals and finding the average speed in each interval gives a pretty good idea of the 
arrow’s progress, but it’s still a reasonable question to ask: just what is the arrow’s speed 
at the instant one second after the flight began? 

How do we answer that question? Think about it before you read on. 

The essential point about speed is that it is a rate of change of position-this is obvious 
when you think about measuring speed, it’s in units like miles per hour, feet per second, 
etc. This implies that to make any statement about speed we have to say how far the 
arrow moved between two specified times. Therefore, to find the speed at the time one 
second after takeoff, we would need to find where the arrow is at, say, 0.995 seconds 
after takeoff, then at 1.005 seconds after takeoff. I’ve chosen here two times that are one-
hundredth of a second apart. If the arrow moves one and a half feet during that period, 
it’s going at 150 feet per second.  

You might object, though, that this is still not very precise. Probably 150 feet per second 
is pretty close to the arrow’s speed at one second after takeoff, but it’s really an average 
over a time interval of one-hundredth of a second, so may not be exactly the speed in the 
middle of the time. This is true-it may not be. What we must do, at least in principle, is to 
take a smaller time interval, say one-millionth of a second, again centered at time one 
second, as before. We now measure how far the arrow moves in the one-millionth of a 
second, and multiply that distance by one million to get the arrow’s average speed over 
that very short time.  

Of course, you could say you’re still not satisfied. You want to know the precise speed at 
the one second mark, not some approximation based on the average over a time interval. 
But, as we’ve just said, all speed measurements necessarily involve some time interval, 
which, however, can be as short as we like. This suggests how we should define what we 
mean by the speed at one instant of time-we take a sequence of shorter and shorter time 
intervals, each one centered at the time in question, and find the average speed in each. 
This series of speed measurements will close in on the exact speed at the time one 
second.  

This should remind you of the discussion of the square root of two. There we had a 
sequence of rational numbers such that if you come up with some small number such as a 
millionth of a trillionth, we could always find a rational within that distance of root two. 
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Here we are saying that if you want the speed to some preassigned accuracy, we can find 
it by taking a sufficiently small time interval around the time in question, and computing 
the average speed in that interval.  

Actually, this may not be as difficult as it sounds. For example, imagine an arrow moving 
far out in space at a steady speed, with no air resistance or gravity to contend with. Then 
it will go at a steady speed, and the average speed over all time intervals will be the same. 
This means we can find (in principle) the exact speed at any given time without having to 
worry about indefinitely small time intervals. Another fairly simple case is an arrow 
gaining speed at a steady rate. Its speed in the middle of a time interval turns out to be 
exactly equal to its average speed in the interval. We shall be discussing this case further 
when we get to Galileo.  

The Beginning of Calculus  

We should emphasize that the above discussion of intervals, instants and so on was not 
the response of the Athenians to Zeno. Only with later work by Eudoxus, Euclid and 
Archimedes did the way to deal with these small quantities gradually become apparent. 
Zeno’s contribution was that he initiated the discussion that ultimately led to the calculus. 
In fact, according to Bertrand Russell (History of Western Philosophy) Zeno taught 
Socrates the Socratic method-the method of seeking knowledge by systematic question 
and answer. Unhappily, Zeno’s approach did not win him powerful friends, and “he 
finally lost his head for treason or something of the sort” (Bell, Men of Mathematics).  

Archimedes Begins Calculating Pi  

Both the Babylonians and the Egyptians used approximations to pi, the ratio of the 
circumference of a circle to its diameter. The Egyptians used a value 3.16, within one per 
cent of the true value. (Further details can be found in Neugebauer, The Exact Sciences in 
Antiquity, Dover, page 78.) Actually, this value follows from their rule for the area of a 
circle, (8/9.d)2, but it is reasonable to suppose they could have constructed a circle and 
measured the circumference to this accuracy. There are no indications that they tried to 

calculate pi, using geometric arguments as 
Archimedes did. 
 

Following Archimedes, we first draw a circle of 
radius equal to one (so the diameter is 2), and 
inscribe in it a regular (that is, all sides of equal 
length) hexagon. It is evident that the hexagon is 
made up of six equilateral triangles, since the 
360 degree angle at the center of the circle is 
equally divided into six, and the angles of a 
triangle add to 180 degrees. Therefore, each side 
of each triangle is equal to the radius of the 
circle, that is, equal to one. Thus the perimeter 
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of the hexagon is exactly 6. It is clear from the figure that the circumference of the circle, 
the total distance around, is greater than the perimeter of the hexagon, because the 
hexagon can be seen as a series of shortcuts on going around the circle. We conclude that 
pi, the ratio of the circumference of the circle to its diameter, is greater than 3, but not 
much-the hexagon looks quite close. (For example, much closer than, going around a 
square boxed around the circle, which would be a distance of 8 radii. If we approximated 
the circumference of the circle by this square, we would guess pi = 4.)  

So the first step-comparing the circle with the hexagon-tells us that pi is greater than 
three. Archimedes’ next move was to find a polygon inscribed in the circle that was 
closer to the circle than the hexagon, so that its perimeter would be closer to the 
circumference of the circle. His strategy was to double the number of sides of the 
polygon, that is, to replace the hexagon by a twelve-sided regular polygon, a dodecagon. 
Obviously, from the figure, the perimeter of the dodecagon is much closer to that of the 
circle than the hexagon was (but it’s still obviously less, since, like the hexagon, it is a 

series of shortcuts on going around the 
circle).  
 

Calculating the perimeter of the 
dodecagon is not as simple as it was for 
the hexagon, but all it require is 
Pythagoras’ theorem. Look at the figure. 
We need to find the length of one side, 
like AB, and multiply it by 12 to get the 
total perimeter. AB is the hypotenuse of 
the right-angled triangle ABD. We know 
the length AD is just ½ (recall the radius 
of the circle = 1). We don’t know the 
other length, BD, but we do know that 
BC must equal 1, because it’s just the 
radius of the circle again. Switching our 
attention to the right-angled triangle 
ACD, we see its hypotenuse equals 1, 

and one side (AD) equals ½. So from Pythagoras, the square of CD must be ¾. We will 
write CD = ½×sqrt3.  

Having found CD, we can find DB since CD + DB = CB = 1, that is, DB = 1 - ½×sqrt3. 
So we know the two shorter sides of the right-angled triangle ADB, and we can find the 
hypotenuse using Pythagoras again.  

The dodecagon turns out to have a perimeter 6.21, giving pi greater than 3.1. This is not 
quite as close as the Egyptians, but Archimedes didn’t stop here. He next went to a 24-
sided regular polygon inscribed in the circle. Again, he just needed to apply Pythagoras’ 
theorem twice, exactly as in the preceding step. The perimeter of the 24-sided regular 
polygon turns out to be 6.26, giving pi greater than 3.13. (We are giving a slightly sloppy 
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version of his work: he always worked with rationals, and where the square root of 3 
came in, he used 265/153 < sqrt3 < 1351/780. These limits came from an algorithm 
originating with the Babylonians. For further information, click here.) 

In fact, Archimedes went on as far as the 96-sided regular polygon inscribed in the circle. 
He then started all over again with regular polygons circumscribed about the circle, so 
that the circle is touching the middle of each side of the polygon, and is completely 
contained by it. Such a polygon clearly has a perimeter greater than that of the circle, but 
getting closer to it as we consider polygons with more and more sides. Archimedes 
considered such a polygon with 96 sides.  

So, with a series of polygons inside the circle, and another series outside it, he managed 
to bracket the length of the circumference between two sets of numbers which gradually 
approached each other. This is again reminiscent of the Greek strategy in approximating 
the square root of 2. The result of all his efforts was the inequality: 3 10/71 < pi < 3 1/7. 
If we take the average of these two numbers, we find 3.14185. The correct value is 
3.14159… .  

Squaring the Circle  

This phrase refers to the famous problem of finding an area with straight-line boundaries 
equal in area to a circle of given diameter. Archimedes proved that the area of a circle is 
equal to that of a right-angled triangle having the two shorter sides equal to the radius of 
the circle and its circumference respectively.  

 

The idea of his proof is as follows. Consider first a 
square inscribed in the circle. The square is made 
up of four triangles, each of height h, say, and 
base length b. (Actually, b = 2h, but we’ll keep 
them separate.) The total area of the square is 
equal to the total area of the 4 triangles, which is 
times ½×h×b, or ½×h×4b. Notice that this is the 
area of a long thin triangle, with height equa
the distance h from the middle of the side of t
square to the center of the circle, and base equal to 
the perimeter length 4b of the square.  

4 

l to 
he 

 

 
 

 

we 
it 

The area of the
square isn’t a
very good
approximation 
to that of the 
circle, but 
can improve 
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by replacing the square by a regular octagon, with all its points on the circle. Now, th
octagon can by divided into eight triangles, following the same procedure as for the 
square. The height of each of these triangles equals the distance from the center of the 
circle to the middle of one side of the octagon. Just as for the square case, the total area of 
these eight triangles is equal to that of a long thin triangle of the same height, and with 
base length equal to the perimeter of the octagon.  

is 

It is evident that the height of the octagon’s triangles is closer to the radius of the circle 
than the height of the square’s triangles, and the perimeter of the octagon is closer to the 
circumference of the circle than the perimeter of the square was.  

The process is repeated: the octagon is replaced by a regular 16-sided polygon, with all 
its points on the circle. This polygon is equal in area to the sum of the 16 triangles formed 
by drawing lines from the center of the circle to its points. These triangles all have the 
same height, so they have total area the same as a long thin triangle having the same 
height, and base length equal to the perimeter of the 16-sided polygon.  

At this point, the pattern should be clear-as we go to polygons of 32, 64, … sides, the 
total area of the polygon is the same as that of a right angled triangle with a long side 
equal to the perimeter of the polygon, which approaches the circumference of the circle 
as the polygons have more and more sides, and the height of the triangle approaches the 
radius of the circle. Therefore, the area of the polygons approaches ½×base×height = 
½×2×pi×r×r = pi×r2.  

Eudoxus’ Method of Exhaustion  
This section and the next are optional—they won’t appear on any tests, etc. I just put 
them in for completeness.  

In fact, the account given above doesn’t do justice to the tightness of the Greeks’ 
geometric arguments. The approach to the limit of more and more sided polygons 
approximating the circle better and better is a bit vague. It’s not very clear how quickly 
this is happening.  
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Eudoxus clarified the situation by 
giving a procedure putting a lower
limit on how much more of the circle’s 
total area was covered by the new 
polygon created at each step. Let’s 
begin with the square. In the figure, we 
show the inscribed square EFGH, a
also a circumscribed square ABCD. 
Clearly, the area of square EFGH is
exactly half of that of square ABCD. 
Since the circle lies entirely inside 
ABCD, it follo
m

 

nd 

 

ws that EFGH covers 
ore than half of the area of the circle.  

 

 

the 

 the circle that lay outside the square.  

Now consider how much more of the 
circle’s total area is covered when we 
go from the square to the octagon. We
add triangular areas like EPF to each 

side of the square. Now, notice that the triangle EPF has area exactly half of the 
rectangular area ELKF. If we had added rectangular areas like that to the four sides of 
square, the circle’s area would have been completely contained. This implies that by 
adding just the triangles, that is, going from the square to the octagon, we are covering 
more than half of the area of

This same argument works at each step: so, the inscribed square covers more than half 
the circle’s area, going to the octagon covers more than half the rest, so the octagon 
covers more than three-quarters of the circle’s area, the 16-sided inscribed polygon 
covers more than seven-eighths of the circle’s area, and so on.  

Archimedes used Eudoxus’ approach to prove that the area of a circle was equal to that of 
the right-angled triangle with shorter sides equal to the radius and the circumference of 
the circle. Suppose, he said, that the triangle’s area is less than the circle’s. Then in the 
sequence of polygons with 4, 8, 16, 32, … sides, we will get to one with area greater than 
the triangle’s. But that polygon will have an area equal to that of a number of triangles 
equal to its number of sides, and, as we’ve argued above, the sum of their areas is equal 
to that of a triangle having their height and base length equal to the perimeter of the 
polygon. But their height is less than the radius of the circle, and the perimeter is less 
than the circumference of the circle. Hence their total area must be less that that of the 
triangle having height the radius of the circle and base the circumference. This gives a 
contradiction, so that triangle cannot have area less than the circle’s.  

Supposing that the triangle’s area is greater than the circles leads to another contradiction 
on considering a sequence of polygons circumscribed about the circle-so the two must be 
exactly equal.  
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Archimedes does an Integral  

Archimedes realized that in finding the area of a circle, another problem was solved, that 
of finding the area of the curved surface of a cone (like an old-fashioned ice-cream cone). 
If such a cone is opened out by cutting a straight line up from its point, it will have the 
shape of a fan-that is, a segment of a circle. Its area will then be that fraction of the full 
circle’s area that its curved edge is of the full circle’s circumference. He also showed how 
to find the curved area of a “slice” of a cone, such as you’d get by cutting off the top of 
an ice-cream cone, by which we mean the other end from the point, cutting parallel to the 
top circle, to get a sort of ring-shaped bit of cone. He than managed to calculate the 
surface area of a sphere. His approach was as follows: imagine where Charlottesville 
appears on a globe, on the 38th parallel. This parallel is a ring going all the way around 
the globe at a constant distance down from the North Pole. Now consider the part of the 
globe surface between this 38th parallel and the 39th parallel. This is a ribbon of surface 
going around, and is very close to a slice of a cone, if we choose a cone of the right size 
and angle. Archimedes’ strategy was to divide the whole surface into ribbons like this, 
and find the area of each ribbon by taking it to be part of a cone. He then summed up the 
ribbon areas. Lastly, he took thinner and thinner ribbons to get an accurate result, using 
the method of exhaustion to prove that the area of the sphere was 4×pi×r2. This is 
precisely equivalent to a modern integral calculus solution of the same problem, and just 
as rigorous (but more difficult!)  

Conclusion  

It is clear from the above discussion that the Greeks laid the essential groundwork and 
even began to build the structure of much of modern mathematics. It should also be 
emphasized that although some great mathematicians devoted their lives to this work, it 
nevertheless took three centuries of cumulative effort, each building on the previous 
work. Evidently, this required a stable, literate culture over many generations. Geometric 
results are difficult to transmit in an oral tradition! Recall that Archimedes was killed 
drawing diagrams in the sand for his pupils. This level of mathematical analysis attained 
by Archimedes, Euclid and others is far in advance of anything recorded by the 
Babylonians or Egyptians.  

 
In preparing this lecture I used :  

A Source Book in Greek Science, M. R. Cohen and I. E. Drabkin, Harvard, 1966  

Copyright except where otherwise noted ©1996 Michael Fowler  
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