
27.  Euler’s Equations 
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Introduction 
We’ve just seen that by specifying the rotational direction and the angular phase of a rotating body 
using Euler’s angles, we can write the Lagrangian in terms of those angles and their derivatives, and then 
derive equations of motion.  These can be solved to describe precession, nutation, etc.  

One might hope for a more direct Newtonian approach—we know, for example, that the steadily 
precessing child’s top is easy to understand in terms of the gravitational torque rotating the angular 

momentum vector.  What about applying ( )
lab

/dL dt K=
 

 (the external torque on the system) more 

generally?  It’s certainly valid. The problem is that in the lab frame ,L = ΩI
 

 meaning ,i ij jL I= Ω  and the 

elements of the inertia tensor relative to the lab axes are constantly changing as the body rotates.  The 

Newtonian approach is only practicable if the connection between ,L Ω
 

 can be made in the body frame 

defined by the principal axes of inertia ( )1 2 3, , ,x x x in which L = ΩI
 

 is 1 1 1 2 2 2 3 3 3, , .L I L I L I= Ω = Ω = Ω   

With the body frame rotating at Ω


 relative to the fixed-in-space ( ), ,X Y Z frame, the rates of change 

of a vector in the two frames satisfy 

 
lab body

.dA dA A
dt dt

   
= +Ω×   

   

 

 

 

To understand this equation, think first of a moving particle, say a bug crawling about on the rotating 
body.  The bug’s movement through space (meaning the lab) is equal to its movement relative to axes 
fixed in the rotating body, plus the rotational movement of that body relative to the fixed-in-space axes. 

You might be thinking at this point:  yes, I can see this is true if the vector represents the position of a 
particle that’s moving around in space, but we’re looking at the changing angular momentum, why isn’t 
the angular momentum just zero in a frame in which the body is at rest?  And the angular velocity, too? 
But what is meant here by the vector in the body frame is the components of the vector in an inertial 

frame that is momentarily coincident with the principal axes. The AΩ×


 term represents the change on 
going through this succession of inertial frames.  Think of a long forward pass of a football. The ball is 
spinning about its long axis (usually), but that axis itself is precessing about the line of flight. Of course, 
air resistance presumably helps it line up this way, but is not the main effect, which is that the angular 
momentum vector points in a constant direction in space, the axis of symmetry is precessing around it, 
as we saw on throwing the ball in class.  Imagine now running alongside the ball, holding a pencil 
pointing in the direction of the constant angular momentum vector. As seen by an observer in the ball, 
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relative to the ball’s principal axes frame of reference, the pencil will be describing a cone—this is what 
we mean by the path of the angular momentum vector relative to the body axes.  

The equations of motion in the body frame are then 

 
body body

,dP dLP F L K
dt dt

   
+Ω× = +Ω× =   

   

 

     

  

where ,F K
 

 are the external force and couple respectively.  

Writing the angular momentum equation in components along the principal axes: 

 

( )
( )
( )

1 1 3 2 2 3 1

2 2 1 3 3 1 2

3 3 2 1 1 2 3

/ ,

/ ,

/ .

I d dt I I K

I d dt I I K

I d dt I I K

Ω + − Ω Ω =

Ω + − Ω Ω =

Ω + − Ω Ω =

  

These are Euler’s Equations. 

In the important special case of zero torque: 

 

( )
( )
( )

1 1 3 2 2 3

2 2 1 3 3 1

3 3 2 1 1 2

/ 0,

/ 0,

/ 0.

I d dt I I

I d dt I I

I d dt I I

Ω + − Ω Ω =

Ω + − Ω Ω =

Ω + − Ω Ω =

 

Free Rotation of a Symmetric Top Using Euler’s Equations 
This is a problem we’ve already solved, using Lagrangian methods and Euler angles, but it’s worth seeing 
just how easy it is using Euler’s equations. 

For 1 2 ,I I= the third equation gives immediately 3Ω = constant.   

Then, writing for convenience ( )3 3 1 1/ ,I I I ωΩ − =
 the first two equations are 

 1 2 2 1, .ω ωΩ = − Ω Ω = Ω   

These equations can be combined to give 

( ) ( )1 2 1 2/ ,d i dt i iωΩ + Ω = Ω + Ω so ( )1 2 .i ti Ae ωΩ + Ω =
 

That is, ( )1 2,Ω Ω moves around a circle centered at the origin with constant angular velocity.  So 
22 2

1 2 AΩ +Ω =  stays constant, and 3Ω  is constant, the angular velocity vector has constant length and 

rotates steadily about the axis 3.x  From 1 1 1 2 2 2 3 3 3, ,L I L I L I= Ω = Ω = Ω  it follows that the angular 



3 
 

momentum vector also precesses at a steady rate about 3.x  This is, remember, in the body frame—we 

know that in the fixed space frame, the angular momentum vector is constant!  It follows that, as 
viewed from the outside, the 3x  axis precesses around the fixed angular momentum vector at a steady 

rate.  

Of course, the rate is the same as that found using Euler’s angles, recall from the previous lecture that 

( ) ( )( )1 1 1 2 3 3 1 1 3, , , sin , cos ,L I I I I I Iθ φ θ φ θ ψ= Ω Ω Ω = +


  

  

so in precession 

( )3 3cos cosL L Iθ φ θ ψ= = +

  and 1/L Iφ =  

so  

( )3 3 1 1
3 1

1 1cos / .L I I I
I I

ψ θ
 

= − = −Ω − 
 

  

Using Energy and Angular Momentum Conservation 
We can also gain some insight into the motion of the free spinning top just from conservation of energy 
and angular momentum.  

The equations are: 

 

22 2
31 2

1 1 3
2 2 2 2
1 2 3

2

.

LL L E
I I I
L L L L

+ + =

+ + =

 

Visualize these equations as surfaces in ( )1 2 3, ,L L L space.  

The second is a sphere, radius ,L centered at the origin. 

 The first is an ellipsoid, also centered at the origin, with semimajor axes ( )1 1 32 , 2 , 2 .EI EI EI  

Do these two surfaces intersect? The answer is yes, they always do.  Assuming first that 1 3I I> , then 

12 ,EI L≥ and further 32 .L EI≥  The sphere intersects the ellipsoid in two circles. These degenerate to 

one circle, the equator, when 3 0,L = and two points (the poles) when 1 2 0.L L= =  

We conclude that the path of the angular momentum vector is a circle around the axis of symmetry in 
the body coordinate system, and since we know that relative to the fixed space axes the angular 
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momentum is in fact constant, this means that actually the body is precessing about its axis of symmetry 
as seen by an observer.  

The Asymmetrical Top 
Here we’ll generalize the above equations and argument to the general case of three different moments 
of inertia about the three principal axes.  That is, 

 

22 2
31 2

1 2 3
2 2 2 2
1 2 3

2

.

LL L E
I I I
L L L L

+ + =

+ + =

 

We’ll take 3 2 1.I I I> >  From the limitations on energy for given angular momentum, the maximum 

sphere radius is the maximum semimajor axis of the ellipsoid, the ellipsoid touches the sphere at its two 
extreme poles.   For a slightly smaller sphere, the lines of intersection arte two small ellipses centered at 
the poles, evidently the major axis will go around this elliptical cone in fixed space.  At the other 
extreme, the minimum allowed angular momentum for a given energy, the sphere is entirely inside the 
ellipsoid except that it touches at the ends of the shortest axes. Again, for a top with slightly more 
angular momentum, it will precess (elliptically) around this minimum axis.  

In both these cases, spin about the axis is stable against small perturbations.  This is not the case for spin 
about the middle axis—for that energy, the intersection of the sphere and ellipsoid does not reduce to 
two points.   

The equations for pure spin about the middle axis can be written 

 

22 2
31 2

1 2 3
22 2 2
31 2

2 2 2 2

2 ,

2 .

LL L E
I I I

LL L L E
I I I I

+ + =

+ + = =

 

These equations define the points common to the sphere and the ellipsoid at this energy.  
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Subtracting the second from the first, we find 

2 2
1 3

1 2 3 2

1 1 1 1 0,L L
I I I I

  
− + − =  

   
 

with solutions 

( ) ( )1 3 1 3 2 2 2 1, / .L cL c I I I I I I= ± = − −   

So for this energy and total angular momentum 
squared, the intersection of the sphere and 
ellipsoid is in two planes, both containing the 
intermediate axis. This means that any 
perturbation of this motion will send the system 

along one of these paths, or a trajectory close to it—in other words, it will deviate far from its original 
motion, in contrast to spin about either of the other two axes.  

In all cases, the path followed by L


, the intersection of the sphere and the ellipsoid, is closed, so the 
angular momentum cycles back to its original value, in periodic motion.  Landau calculates the period, a 
straightforward (but too lengthy to repeat here) solution of Euler’s equations, giving elliptic functions.  
Actually, the top does not return to its original configuration: the angular momentum returns, but the 
top has a different angular position about its axis.  Landau states this result, but refers to Whittaker for 
the derivation. 

Contours of constant angular momentum on a  
constant-energy ellipsoidal surface, viewed  
along the intermediate axis. 
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