
25. Rigid Body Moving Freely 
Michael Fowler 

Angular Momentum and Angular Velocity 
In contrast to angular velocity, the angular momentum of a body depends on the point with respect to 
which it is defined.  For now, we take it (following Landau, of course) as relative to the center of mass, 
but we denote it by ,L



following modern usage.  This “intrinsic” angular momentum is like the Earth’s 
angular momentum from its diurnal rotation, as distinct from its orbital angular momentum in going 
around the Sun.  

That is, 
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where I is the inertia tensor: this just means i ik kL I= Ω . 

Explicitly, taking the principal axes as the ( )1 2 3, ,x x x  axes, 

 1 1 1 2 2 2 3 3 3, , .L I L I L I= Ω = Ω = Ω   

For anything with spherical inertial symmetry (such as a cube or a tetrahedron!) .L I= Ω
 

. 

Landau defines a rotator as a collection of massive particles all on a line.  (I guess that includes diatomic 
molecules, and, for example, CO2, neglecting electrons and nuclear size)  We know there are only two 
physical rotational degrees of freedom for these molecular rotators (thanks to quantum mechanics) and 
obviously the two principal axes are perpendicular to the line of masses, and degenerate.  Again, then, 

.L I= Ω
 

. 

Precession of a Symmetrical Top 
A more interesting case is the free rotation (zero external torque) of a symmetrical top, meaning 

1 2 3.I I I= ≠   
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We can take any pair of orthogonal axes, perpendicular to the 
body’s symmetry axis, as the 1 2,x x axes.  We’ll choose 2x , 

following Landau, as perpendicular to the plane containing L


and 
the momentary position of the 3x axis, so in the diagram here 2x  
is perpendicularly out from the paper/screen, towards the 
viewer. 

This means the angular momentum component 2 0L = and 

therefore 2 0Ω = .  Hence Ω


 is in the same plane as 3,L x


, and 

so the velocity v r= Ω×


 

of every point on the axis of the top is 
perpendicular to this plane (into the paper/screen).  The axis of 
the top 3Ox must be rotating uniformly about the direction of .L



  

The spin rate of the top around its own axis is  

( )3 3 3 3/ / cosL I L I θΩ = = . 

The angular velocity vectorΩ


can be written as a sum of two components, one along the body’s axis

3Ox and one parallel to the angular momentum L


(these components are shown dashed in the figure) 

 precession 3Ω = Ω +Ω
  

  

The component along the body’s axis 3Ox does not contribute to the precession, which all comes from 
the component along the (fixed in space) angular momentum vector. 

The speed of precession follows from precession 1sinθΩ = Ω , and ( )1 1 1 1/ / sinL I L I θΩ = = , so 

precession 1/ .L IΩ =  

Note also the ratio of precession rate to spin around axis is 

( )precession 3 3 1/ / sec .I I θΩ Ω =  

This means the precession rate and the spin are very comparable, except when θ  is near / 2,π  when 
the precession becomes much faster. Remember this is the body’s precession with no external torque, 
and is clearly completely different—much faster precession—than the familiar case of a fast spinning 
top under gravity. 

Throwing a Football… 
If you throw a football and manage to give it only spin about the long axis, it will stay pointing that way 
(apart from drag effects, which will tend to line up spin direction with velocity).  If when you throw it 
you also add some angular velocity along a shorter axis, it will precess (wobble). Given the angle, the 
ratio of precession to spin is fixed.  
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If you take a ball that is already spinning fast about its long axis, have the two ends of the long axis (its 
points) in your palms, then, as you throw it, give it a quick twist by moving one hand downwards and the 
other up as you throw, to give it significant angular velocity about a short axis, at the same time keeping 
the fast spin about the long axis, once the ball leaves your hands, the angle between the spin and the 
total angular momentum, the angle of wobble, is completely determined by the ratio of the two angular 
velocities.  

Equations of Motion for Rigid Body with External Forces 
Translation 
A free rigid body has six degrees of freedom (for instance, the coordinates of the center of mass and the 
orientation of the body).  Therefore, there are six equations of motion, three for the rate of change of 

spatial position of the center of mass, in other words for the components of the velocity ,V


 and three 

for the rate of change of orientation, the angular velocity Ω


. 

These equations are of course nothing but Newton’s laws, easily derived by summing over the set of  

equations ( ) /i i if d m v dt=




 for each particle. Denoting the total momentum of the body by P


,  

( )n n n
n n
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and ,P MV=
 

where /V dR dt=
 

 is the velocity of the center of mass. (This can be established by 

differentiating with respect to time the definition of the center of mass, .n n
n

MR m r=∑




) 

The total force on all the particles is a sum of the total external force on the body and the sum of 
internal forces between particles—but these internal forces come in equal and opposite pairs, from 
Newton’s Third Law, and therefore add to zero.  

The bottom line, then, is that the rate of change of momentum of a rigid body equals the total external 
force on the body.  If this force is from a time-independent potential, then  

 /F V R= −∂ ∂
 

  

because if the body is moved through Rδ


 (without rotation, hence the partial derivative), each 

individual particle moves through the same Rδ


, the work done by the external potential on the thn  

particle is ext
n nf R Vδ δ⋅ = −




 , and summing over all the particles gives tot ,F R Vδ δ⋅ = −
 

 giving the above 

equation as 0.Rδ →


 

Rotation 
To derive the equation of motion for rotation of a rigid body, we choose the inertial frame in which the 
center of mass is momentarily at rest, and take the center of mass as the origin. 

The rate of change of angular momentum about the center of mass (origin), 
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where we dropped the n nr p×
 

  term because n nr v=
 

  is parallel to ,n np mv=
 

 then we used n nf p=




  to 
get the total moment of the external forces about the center of mass, the torque.  

The angular momentum about the center of mass is the same in any inertial frame, since the extra term 

on adding a velocity 0v  to each mass is 0 0 0n n n nr m v v m r× = − × =∑ ∑   

 from the definition of the 

center of mass.  

If the center of mass is not at the origin, denote the particle coordinates by n nR rρ = +


 

 in the usual 
notation, so 

 new origin cm ,n n n n n n n n
n n n

L m v r m v R m v L R Pρ= × = × + × = + ×∑ ∑ ∑
    
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a sum of an intrinsic (“spin”) angular momentum and an extrinsic (“orbital”)angular momentum. 

Similarly, if the torque of external forces relative to the center of mass is n n
n

K r f= ×∑






 as defined 

above, then relative to the new origin the torque is  

new origin cm ,n n n n n
n n n

K f R f r f R F Kρ= × = × + × = × +∑ ∑ ∑
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    

 

 

that is, the torque about the new origin is the torque about the center of mass plus the torque about 
the new origin of the total external force acting at the center of mass.  

An important special case is that of a couple: a pair of equal but oppositely directed forces, acting along 
parallel but separated lines (like two hands oppositely placed turning a steering wheel).  The forces add 
to zero, so from the above equation a couple exerts the same torque about any origin.  

More generally, the term couple is often used (including by Landau) to refer to any set of forces that add 
to zero, but give a nonzero torque because of their lines of action, and such a set give the same torque 
about any origin.  

Exercise: prove that for a rigid body freely falling in a uniform gravitational field, the angular momentum 
about the center of mass remains constant, but about another point it will in general be changing.   
What about a charged rigid body moving in space (no gravity) through a uniform electric field? 
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