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Introduction 
(Following Landau para 27) 

A one-dimensional simple harmonic oscillator, a mass on a spring, 

( ) 0d mx kx
dt

+ =  

has two parameters, m and .k   For some systems, the parameters can be changed externally (an 
example being the length of a pendulum if at the top end the string goes over a pulley).  

We are interested here in the system’s response to some externally imposed periodic variation of its 
parameters, and in particular we’ll be looking at resonant response, meaning large response to a small 
imposed variation. 

Note first that imposed variation in the mass term is easily dealt with, by simply redefining the time 

variable to ( )/d dt m tτ = , meaning 
( )

.dt
m t

τ = ∫   Then 

2

2

1 1 1d dx d dx d xm m
dt dt m d m d m dτ τ τ
   = =   
   

 , 

and the equation of motion becomes ( )
2

2 0.d x m kx
d

τ
τ

+ =   

This means we can always transform the equation so all the parametric variation is in the spring 
constant, so we’ll just analyze the equation 

 ( )
2

2
2 0.d x t x

dt
ω+ =   

Furthermore, since we’re looking for resonance phenomena, we will only consider a small parametric 
variation at a single frequency, that is, we’ll take 

 ( ) ( )2 2
0 1 cos ,t h tω ω= + Ω   

where 1h  , and h  is positive (a trivial requirement—just setting the time origin).  

(Note: We preferΩ  where Landau uses ,γ which is often used for a resonance width these days.)  
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We have now a driven oscillator:  

 
2

2 2
0 02 cos .d x x xh t

dt
ω ω+ = − Ω   

How does this differ from our previous analysis of a driven oscillator?  In a very important way!   

The amplitude x is a factor in the driving force.   

For one thing, this means that if the oscillator is initially at rest, it stays that way, in contrast to an 
ordinary externally driven oscillator.  But if the amplitude increases, so does the driving force.  This can 
lead to an exponential increase in amplitude, unlike the linear increase we found earlier with an external 
driver.  (Of course, in a real system, friction and nonlinear potential terms will limit the growth.)   

What frequencies will prove important in driving the oscillator to large amplitude?  It responds best, of 
course, to its natural frequency 0ω .  But if it is in fact already oscillating at that frequency, then the 

driving force, including the factor of x ,  is proportional to 

( ) ( )1 1
0 0 02 2cos cos cos cost t t tω ω ωΩ = Ω− + Ω+ , 

with no component at the natural frequency 0ω for a general Ω .  

The simplest way to get resonance is to take 02 .ωΩ =  Can we understand this physically? Yes.  Imagine 

a mass oscillating backwards and forwards on a spring, and the spring force increases just after those 
points where the mass is furthest away from equilibrium, so it gets an extra tug inwards twice a cycle. 
This will feed in energy.  (You can drive a swing this way.) In contrast, if you drive at the natural 
frequency, giving  little push inwards just after it begins to swing inwards from one side, then you’ll be 
giving it a little push outwards just after it begins to swing back from the other side.  Of course, if you 
push only from one side, like swinging a swing, this works—but it isn’t a single frequency force, the next 
harmonic is doing most of the work.  

Resonance near Double the Natural Frequency 
From the above argument, the place to look for resonance is close to 02 .ωΩ =  Landau takes 

 ( )2
0 01 cos 2 0x h t xω ω ε+ + + =     

and, bearing in mind that we’re looking for oscillations close to the natural frequency, puts in 

 ( ) ( ) ( ) ( )1 1
0 02 2cos sin ,x a t t b t tω ε ω ε= + + +   

with ( ) ( ),a t b t slowly varying.   
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It’s important to realize that this is an approximate approach.  It neglects nonresonant frequencies 
which must be present in small amounts, for example  

( ) ( ) ( ) ( )1 1 1 1 1
0 0 0 02 2 2 2 2cos cos 2 cos3 cost t t tω ε ω ε ω ε ω ε+ + = + + +  

and the ( )1
0 23 ω ε+  term is thrown away.   

And, since the assumption is that ( ) ( ),a t b t  are slowly varying, their second derivatives are dropped 

too, leaving just 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

21 1
0 0 0 0 02 2

21 1
0 0 0 0 02 2

2 sin cos

2 cos sin .

x a t t a t t

b t t b t t

ω ω ε ω ω ε ω ε

ω ω ε ω ω ε ω ε

= − + − + +

+ + − + +

 



 

This must equal  

 ( ) ( ) ( ) ( ) ( )2 1 1
0 0 0 02 21 cos 2 cos sin .h t a t t b t tω ω ε ω ε ω ε − + + + + +       

Keeping only the resonant terms, we take ( ) ( ) ( )1 1 1
0 0 02 2 2cos cos 2 cost t tω ε ω ε ω ε+ ⋅ + = +  and 

( ) ( ) ( )1 1 1
0 0 02 2 2sin cos 2 sin ,t t tω ε ω ε ω ε+ ⋅ + = − + so this expression becomes 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 1 1
0 0 0 02 2

2 1 1 1 1 1 1
0 0 0 0 02 2 2 2 2 2

1 cos 2 cos sin

cos sin cos sin

h t a t t b t t

a t t b t t ha t t hb t t

ω ω ε ω ε ω ε

ω ω ε ω ε ω ε ω ε

− + + + + +     
= − + + + + + − +  

  

The equation becomes: 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

21 1
0 0 0 0 02 2

21 1
0 0 0 0 02 2

2 1 1 1 1 1 1
0 0 0 0 02 2 2 2 2 2

2 sin cos

2 cos sin

cos sin cos sin

x a t t a t t

b t t b t t

a t t b t t ha t t hb t t

ω ω ε ω ω ε ω ε

ω ω ε ω ω ε ω ε

ω ω ε ω ε ω ε ω ε

= − + − + +

+ + − + +

== − + + + + + − +  

 

   

The zeroth-order terms cancel between the two sides, leaving

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1
0 0 0 0 0 0 0 02 2 2 2

2 1 1 1 1
0 0 02 2 2 2

2 sin cos 2 cos sin

cos sin

a t t a t t b t t b t t

ha t t hb t t

ω ω ε ω ε ω ε ω ω ε ω ε ω ε

ω ω ε ω ε

− + − + + + − +

= − + − +  





  

Collecting the terms in ( ) ( )1 1
0 02 2sin , cost tω ε ω ε+ + : 

 ( ) ( ) ( )( ) ( )1 1 1 1
0 0 0 0 0 02 2 2 22 sin 2 cos 0.a b h b t b t a h a tε ω ω ω ε ε ω ω ω ε− + + + + − + + =

   
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The sine and cosine can’t cancel each other, so the two coefficients must both be identically zero.  This 

gives two first order differential equations for the functions ( ) ( ),a t b t , and we look for exponentially 

increasing functions, proportional to ( ) ( ),st sta t ae b t be= = , which will be solutions provided 

 
( )

( )
1 1

02 2

1 1
02 2

0,

0.

sa h b

h a sb

ε ω

ε ω

+ + =

− − =
  

The amplitude growth rate is therefore 

 ( )22 21 1
04 2 .s hω ε = −  

  

Parametric resonance will take place if s is real, that is, if 

 1 1
0 02 2 ,h hω ε ω− < <   

a band of width 0hω about 02ω  . 

Example: Pendulum Driven at near Double the Natural Frequency 
A simple pendulum of length  , mass m  is attached to a point which oscillates vertically cosy a t= Ω . 

Measuring y downwards, the pendulum position is 

sin , cos cos .x y a tφ φ= = Ω +   

The Lagrangian 

( )
( ) ( )

2 21
2

22 2 21 1
2 2

2 2 2 2 21
2

cos

cos sin sin cos

sin cos sin cos

L m x y mg

m m a t mg

dm ma t a t mg
dt

φ

φ φ φ φ φ

φ φ φ

= + +

= + Ω Ω + +

= − Ω Ω + Ω Ω +

 


 

  



  

 

The purely time-dependent term will not affect the equations of motion, so we drop it, and since the 
equations are not affected by adding a total derivative to the Lagrangian, we can integrate the second 

term by parts (meaning we’re dropping a term ( )sin cosd ma t
dt

φΩ Ω  ) to get 

 2 2 21
2 cos cos cos .L m ma t mgφ φ φ= + Ω Ω +

     

(We’ve also dropped the term cosmga tΩ  from the potential energy term—it has no φ orφ

dependence, so will not affect the equations of motion.) 
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The equation for small oscillations is 

 ( ) ( )2 2
0 0 01 4 / cos 2 0, / .a t gφ ω ω ε φ ω+ + + = =  



    

Comparing this with 

 ( )2
0 01 cos 2 0x h t xω ω ε+ + + =    

we see that 4 /a h≡ , so the parametric resonance range around 02 2 /gω =   is of width

31
02 2 / .h a gω =   
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