
15. Keplerian Orbits 
Michael Fowler 

Preliminary: Polar Equations for Conic Section Curves 
As we shall find, Newton’s equations for particle motion in an inverse-square central force give orbits 
that are conic section curves.  Properties of these curves are fully discussed in the accompanying “Math 
for Orbits” lecture, here for convenience we give the relevant polar equations for the various 
possibilities.  

For an ellipse, with eccentricity e  and semilatus rectum (perpendicular distance from focus to curve) :   

1 cos .e
r

θ= +


 

Recall the eccentricity e  is defined by the distance from the center of the ellipse to the focus being ,ae  

where a is the semi-major axis, and ( )2 21 / .a e b a= − =    

For a parabola,  

( )1 cos .r θ= +  

For a hyperbolic orbit with an attractive inverse square force, the polar equation with origin at the 
center of attraction is 

1 cose
r

θ= −


 

where asymptote asymptote2 .θ θ π θ< < −  (Of course, the physical path of the planet (say) is only one branch 

of the hyperbola.)  

The ( ),r θ origin is at the center of attraction (the Sun), geometrically this is one focus of the hyperbola, 

and for this attractive case it’s the focus “inside” the curve. 

For a hyperbolic orbit with a repulsive inverse square force (such as Rutherford scattering), the origin is 
the focus “outside” the curve, and to the right (in the usual representation): 

cos 1,e
r

θ= − −


 

with angular range asymptote asymptote.θ θ θ− < <   
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Summary 
We’ll begin by stating Kepler’s laws, then apply Newton’s Second Law to motion in a central force field.  
Writing the equations vectorially leads easily to the conservation laws for angular momentum and 
energy.    

Next, we use Bernoulli’s change of variable 1 /u r=  to prove that the inverse-square law gives conic 
section orbits. 

A further vectorial investigation of the equations, following Hamilton, leads naturally to an unsuspected 
third conserved quantity, after energy and angular momentum, the Runge Lenz vector. 

Finally, we discuss the rather surprising behavior of the momentum vector as a function of time.   

Kepler’s Statement of his Three Laws 
1. The planets all move in elliptical orbits with the Sun at one focus.  

 

2. As a planet moves in its orbit, the line from the center of the Sun to the center of the planet sweeps 
out equal areas in equal times, so if the area SAB (with curved side AB) equals the area SCD, the planet 
takes the same time to move from A to B as it does from C to D.   

 

 

For my Flashlet illustrating this law, click here. 

3. The time it takes a planet to make one complete orbit around the sunT (one planet year) is related to 
the length of the semimajor axis of the ellipse a : 

2 3.T a∝  

C 
B 

D 

A 
S 

http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/kepler6.htm
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In other words, if a table is made of the length of year T for each planet in the Solar System, and the 
length of the semimajor axis of the ellipse a , and 2 3/T a  is computed for each planet, the numbers are 
all the same. 

These laws of Kepler’s are precise (apart from tiny relativistic corrections, undetectable until centuries 
later) but they are only descriptive—Kepler did not understand why the planets should behave in this 
way.  Newton’s great achievement was to prove that all this complicated behavior followed from one 
simple law of attraction.  

 

Dynamics of Motion in a Central Potential: Deriving Kepler’s Laws 

Conserved Quantities 
The equation of motion is: 

( ) ˆmr f r r= −
 

 . 

Here we use the hat ^ to denote a unit vector, so ( )f r  gives the magnitude (and sign) of the force.  For 

Kepler’s problem, ( ) 2/f r GMm r= .  

(Strictly speaking, we should be using the reduced mass for planetary motion, for our Solar System, that is a small 
correction.  It can be put in at the end if needed.) 

Let’s see how using vector methods we can easily find constants of motion:  first, angular momentum—
just act on the equation of motion with :r×  

( ) ˆmr r f r r r× = − ×
   

  

Since ˆ 0r r× =
 

, we have 0r mr× =
 

 , which immediately integrates to 

r mr L× =


 

 , 

 a constant, the angular momentum, and note that 0 ,L r L r⋅ = = ⋅
 

 

  so the motion will always stay in a  

plane, with L


perpendicular to the plane. 

This establishes that motion in a purely central force obeys a conservation law: that of angular 
momentum. 

 (As we've discussed earlier in the course, conserved quantities in dynamical systems are always related to some 
underlying symmetry of the Hamiltonian. The conservation of angular momentum comes from the spherical 
symmetry of the system: the attraction depends only on distance, not angle.  In quantum mechanics, the angular 
momentum operator is a rotation operator:  the three components of the angular momentum vector are 
conserved, are constants of the motion, because the Hamiltonian is invariant under rotation.  That is, the angular 
momentum operators commute with the Hamiltonian.  The classical analogy is that they have zero Poisson 
brackets with the Hamiltonian.) 
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To get back to Kepler’s statement of his Laws, notice that when the planet moves through an 
incremental distance d r  it “sweeps out” an area 1

2 r dr×
 

, so the rate of sweeping out area is 

1
2/ / 2 .dA dt r r L m= × =
 



  
Kepler’s Second Law is just conservation of angular momentum! 

Second, conservation of energy: this time, we act on the equation of motion with r ⋅  : 

( ) ˆ .mr r f r r r⋅ = − ⋅
   

    

This immediately integrates to 

( )21
2 .

r

mr f r dr E
∞

− =∫


  

 Another conservation law coming from a simple integral: conservation of energy.  What symmetry does 
that correspond to? The answer is the invariance of the Hamiltonian under time: the central force is 
time invariant, and we’re assuming there are time-dependent potential terms, (such as from another 
star passing close by). 

 Standard Calculus Derivation of Kepler’s First Law 
The first mathematical proof that an elliptic orbit about a focus meant an inverse-square attraction was 
given by Newton, using Euclidean geometry (even though he invented calculus!).  The proof is 
notoriously difficult to follow.  Bernoulli found a fairly straightforward calculus proof in polar 
coordinates by changing the variable to 1 / .u r=    

The first task is to express F ma=




 in polar, meaning ( ), ,r θ  coordinates.   

The simplest way to find the expression for acceleration is to parameterize the planar motion as a 

complex number:  position ire θ , velocity i ire ir eθ θθ+ 

 , notice this means ( ),r rθ since the i ensures the 

rθ term is in the positiveθ direction, and differentiating again gives 

( )2 , 2 .a r r r r rθ θ θ= = − +
 

   

   

For a central force, the only acceleration is in the r direction, so 2 0,r rθ θ+ = 

 which integrates to give 

2 ,mr Lθ =  

the constancy of angular momentum. 

Equating the radial components, 

2
2

2 2
d r GMr
dt r

θ− = −  
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This isn’t ready to integrate yet, because θ  varies too.  But since the angular momentum 2L mr θ=   is 

constant, we can eliminate θ  from the equation, giving: 

22

2 2 2

2

2 2 3

d r GM Lr
dt r mr

GM L
r m r

 = − +  
 

= − +

 

This doesn’t look too promising, but Bernoulli came up with two clever tricks. The first was to change 
from the variable r to its inverse, 1 /u r= . The other was to use the constancy of angular momentum 
to change the variable t  to θ . 

 Putting these together: 

2
2

m dL mr
u dt

θθ= =  

so  

2

.d Lu d
dt m dθ

=  

Therefore 

2
1 1dr d du L du

dt dt u u dt m dθ
 = = − = − 
 

 

and similarly  

2 2 2 2

2 2 2 .d r L u d u
dt m dθ

= −  

Going from r to u  in the equation of motion 

2 2

2 2 2 3
d r GM L
dt r m r

= − +  

we get 

2 2 2 2 3
2

2 2 2 ,L u d u L uGMu
m d mθ

− = − +  

or 

2 2

2 2 .d u GMmu
d Lθ

+ =  
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This equation is easy to solve!  The solution is 

2

2
1 cosGMmu C
r L

θ= = +  

where C is a constant of integration, determined by the initial conditions.  

This proves that Kepler’s First Law follows from the inverse-square nature of the force, because (see 
beginning of lecture) the equation above is exactly the standard ( ),r θ  equation of an ellipse of semi 

major axis a and eccentricity e , with the origin at one focus: 
 

( )21
1 cos .

a e
e

r
θ

−
= +  

 

Comparing the two equations, we can find the geometry of the ellipse in terms of the angular 
momentum, the gravitational attraction, and the initial conditions. The angular momentum is 
 

( )2 2 2 2 21 / .L GMm a e GMm b a= − =  

A Vectorial Approach:  Hamilton’s Equation and the Runge Lenz Vector 
(Mainly following Milne, Vectorial Mechanics, p 235 on.) 

Laplace and Hamilton developed a rather different approach to this inverse-square orbit problem, best 
expressed vectorially, and made a surprising discovery: even though conservation of angular momentum 
and of energy were enough to determine the motion completely, for the special case of an inverse-
square central force, something else was conserved.  So the system has another symmetry! 

Hamilton’s approach (actually vectorized by Gibbs) was to apply the operator L ×


to the equation of 

motion ( ) ˆmr f r r= −
 

 : 

( ) ( ) ˆL mr f r r mr r × = − × × 


   

   

Now 

( ) ( ) 2 2 2
2

ˆˆ ˆ ,r r dr d r drr r r r r r rr r r r
r r dt dt r dt

   × × = − ⋅ + = − = =   
  

   



      

    

  

so 

( )2
ˆ

.drL mr mr f r
dt

× = −
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This is known as Hamilton’s equation.  In fact, it's pretty easy to understand on looking it over: ˆ /dr dt

 

has magnitudeθ and direction perpendicular to ,r  ( ) ˆmr f r r= −
 

 ,  2mr Lθ = , etc.  

It isn’t very useful, though—except in one case, the inverse-square: ( ) 2/f r k r=
  (so .k GM= )   

Then it becomes tractable:  ( )2
ˆ ˆdr drL mr mr f r km

dt dt
× = − = −

 





 ,  and—surprise—this integrates 

immediately to 

ˆL mr kmr A× = − −


 

  

where A


is a vector constant of integration,  that is to say we find 

ˆA p L kmr= × −
 

 

 

is constant throughout the motion!   

This is unexpected:  we found the usual conserved quantities, energy and angular momentum, and 
indeed they were sufficient for us to find the orbit.  But for the special case of the inverse-square law, 
something else is conserved.   It’s called the Runge Lenz vector (sometimes Laplace Runge Lenz, and in 
fact Runge and Lenz don’t really deserve the fame—they just rehashed Gibbs’ work in a textbook).   

From our earlier discussion, this conserved vector must correspond to a symmetry.  Finding the orbit 
gives some insight into what’s special about the inverse-square law. 

Deriving the Orbital Equation from the Runge-Lenz Vector 
The Runge Lenz vector gives a very quick derivation of the elliptic orbit, without Bernoulli’s unobvious 
tricks in the standard derivation presented above. 

First, taking the dot product of ˆA p L kmr= × −
 

 

 with the angular momentum L


, we find 
ˆ 0A L kmr L⋅ = ⋅ =

  



, meaning that the constant vector A


 lies in the plane of the orbit. 

Next take the dot product of A


 with r , and since 2p L r L r p L× ⋅ = ⋅ × =
 

   

, we find 2L kmr A r= + ⋅




, 
or 

1 cose
r

θ= +


 

where 2 / , /L km e A km= =  and θ  is the angle between the planet’s orbital position and the Runge 

Lenz vector A


. 

This is the standard ( ),r θ  equation for an ellipse, with  the semi-latus rectum (the perpendicular 

distance from a focus to the ellipse), e the eccentricity. 

Evidently A


 points along the major axis. 
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The point is that the direction of the major axis remains the same: the elliptical orbit repeats 
indefinitely. If the force law is changed slightly from inverse-square, the orbit precesses: the whole 
elliptical orbit rotates around the central focus, the Runge Lenz vector is no longer a conserved quantity. 
Strictly speaking, of course, the orbit isn’t quite elliptical even for once around in this case. The most 
famous example, historically, was an extended analysis of the precession of Mercury’s orbit, most of 
which precession arises from gravitational pulls from other planets, but when all this was taken into 
account, there was left over precession that led to a lengthy search for a planet closer to the Sun (it 
didn’t exist), but the discrepancy was finally, and precisely, accounted for by Einstein’s theory of general 
relativity. 

Variation of the Momentum Vector in the Orbit (Hodograph) 
It’s interesting and instructive to track how the momentum vector changes as time progresses, this is 
easy from the Runge Lenz equation.  (Hamilton did this.) 

From ˆp L kmr A× = +


 

, we have 

( ) ˆL p L kmL r L A× × = × + ×
   

 

 

That is,  

2 2
ˆ.L A kmLp r

L L
×

= + ×
 

 

 

Staring at this expression, we see that 

 p  goes in a circle of radius /km L about a point distance /A L from the momentum plane origin.   

Of course, p is not moving in this circle at a uniform rate (except for a planet in a circular orbit), its 
angular progression around its circle matches the angular progression of the planet in its elliptical orbit 

(because its location on the circle is always perpendicular to the r̂ direction from the circle center). 

An orbit plotted in momentum space is called a hodograph.  

Orbital Energy as a Function of Orbital Parameters Using Runge-Lenz 
We’ll prove that the total energy, and the time for a complete orbit, only depend on the length of the 
major axis of the ellipse.  So a circular orbit and a very thin one going out to twice the circular radius 
take the same time, and have the same total energy per unit mass. 

Take ˆp L A kmr× = +


 

  and square both sides, giving 

2 2 2 2 2

2
2 2 2

2 2 2 2

ˆ2

2

2 / .

p L A k m kmA r

L kmrA k m km
r

A k m kmL r

= + + ⋅

 −
= + +  

 
= − +
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Dividing both sides by  22mL , 

2 2 2 2

2 .
2 2
p k A k m
m r mL

−
− =  

Putting in the values found above, ( )2 2, , 1A kme L km a e= = = −   we find 

2

.
2 2
p k k
m r a
− = −  

So the total energy, kinetic plus potential, depends only on the length of the major axis of the ellipse.  

Now for the time in orbit:  we’ve shown area is swept out at a rate / 2L m , so one orbit takes time 

/ ( / 2 )T ab L mπ= , and ( )2 21 , 1b a e L kma e= − = − , so  

3/2 3/22 / 2 / .T a m k a GMπ π= =  

This is Kepler’s famous Third Law: 2 3T a∝ , easily proved for circular orbits, not so easy for ellipses. 

Important Hint! 
Always remember that for Kepler problems with a given massive Sun, both the time in orbit and the 
total orbital energy/unit mass only depend on the length of the major axis, they are independent of 
the length of the minor axis.  This can be very useful in solving problems.  

The Runge-Lenz Vector in Quantum Mechanics 
This is fully discussed in advanced quantum mechanics texts, we just want to mention that, just as 
spherical symmetry ensures that the total angular momentum and its components commute with the 
Hamiltonian, and as a consequence there are degenerate energy levels connected by the raising 
operator, an analogous operator can be constructed for the Runge-Lenz vector, connecting states having 
the same energy.  Furthermore, this raising operator, although it commutes with the Hamiltonian, does 
not commute with the total angular momentum, meaning that states with different total angular 
momentum can have the same energy.  This is the degeneracy in the hydrogen atom energy levels that 
led to the simple Bohr atom correctly predicting all the energy levels (apart from fine structure, etc.).   
It’s also worth mentioning that these two vectors, angular momentum and Runge-Lenz, both sets of 
rotation operators in three dimensional spaces, combine to give a complete set of operators in a four 
dimensional space, and the inverse-square problem can be formulated as the mechanics of a free 
particle on the surface of a sphere in four-dimensional space.  
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