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Physics 2415 Lecture 6:  Electrostatic Potential 
Michael Fowler, UVa, 9/16/09 

The Gravitational Analogy 
As we’ve discussed, the gravitational field from a point mass and the electrostatic field from a point 
charge both go down with distance as 1/r2, and both kinds of fields satisfy the Superposition Principle.  It 
might seem at first glance that electric fields are just going to follow patterns set by gravitational fields, 
but, of course, there’s one huge difference:  the two kinds of electric charge allow for both attraction 
and repulsion, there is no gravitational repulsion between masses.  You might think antimatter would 
repel matter, but that is not the case—all kinds of matter attract gravitationally.  (You may have read 
about Dark Energy in the universe, which apparently causes everything to fly apart.  But don’t confuse 
that with Dark Matter, an as yet unidentified kind of matter we know must be there because its 
gravitational attraction is clear from the spinning rate of matter in galaxies.) 

Gravitational Potential mgh and Its Electrical Equivalent 
Let’s begin by reviewing the Earth’s gravitational field in this room.  We can take it to be uniformly 
downward: a mass m will feel a downward force mg, doubling the mass doubles the force.  That is, the 

gravitational force on a mass m F mg=




where g , a downward pointing vector of length g, is the 

gravitational field strength.  It takes work to lift a mass m from a point A to a higher point B against this 

gravitational pull:  to be precise, as discussed earlier, it takes work ( )
B

A
W mg ds= − ⋅∫





, where ds


is an 

incremental step on the path, and to move the mass at a steady rate we need to exactly counteract the 

gravitational force, that is we must exert a force mg−


, so the work done for the step ds mg ds= − ⋅
 



. 

Since this is a dot product, the only displacement that requires work is that in the upward direction, and 
it is easy to see that the total work done against the gravitational force on raising a mass m from A to B 

is ( )B AW mg h h= − , where hB is the height of point B above the ground.  This work is stored by the 

system—it can be recovered simply by allowing the mass to fall back, in which scenario it accelerates 
and thereby gains kinetic energy equal to the work needed to raise it in the first place.  The stored 
energy is called “potential energy”. 

This leads naturally to the definition of a gravitational potential ( )U h gh= , so ( )mU r mgh=


 is a 

measure of the potential energy stored by a mass m as a function of position.  Following normal usage, 
we denote height by h rather than z.  There is of course the usual ambiguity concerning what “ground 

level” we take as 0h = , but it is irrelevant in practice as we’re always interested in potential energy 
differences.  

The electrostatic analogy to gravity near the Earth’s surface is the electric field in the region above an 
infinite, uniformly negatively charged insulating plane.   
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The electric field has uniform strength and points towards the plane. The force on a charge q is F qE=
 

.   

Since there is no reason for this plane to be horizontal, we’ll measure distance away from the plane as z, 

so ẑ is a unit vector normal to the plane.  By precise analogy with the gravitational discussion, the work 

needed to move a charge q along a path in this field is  ( )B

A
W qE ds= − ⋅∫




, and, without further ado, we 

can define an electrostatic potential  

 ( ) ( )0/ 2V z Ez zσ ε= = ,  

where σ is the charge density (this is for an insulating charged plane: remember that for a uniform 
layer of charge σ on the surface of a thick conductor, there will be no factor two in the denominator). 

Now this was a  negatively charged plane, so a positively charged particle projected upwards from this 
plane will follow a parabolic path and come back down, just as a mass will in the gravitational field in 
this room.   

A positively charged particle, on the other hand, will follow a parabolic path upwards!  To see this, 
consider a particle projected parallel to the plane but some distance above it.  Particles with the same 
mass but opposite charges will follow paths that are up-down mirror images of each other. 

In practice, a uniform electric field as described above is well approximated in the space between two 
oppositely charged parallel planes.  It is also a good description to the field near the surface of a charged 
conductor—near enough for the conductor to appear flat.   

The Gravitational Analogy at Larger Distances 
At distances comparable to the size of the Earth, the gravitational field has the familiar inverse square 

form ( ) 2ˆ /Eg r GM r r= −
 

. 

The work done, and therefore the potential energy difference, on a path in this field is as before 

( )( )B

A
W mg r ds= − ⋅∫



 

 

except that the gravitational field is no longer constant.  As before, the dot product denotes that work is 
only done when there is displacement in the direction of the force:  here this means displacement in 
the radial direction, directly outwards.  So, if A is at distance rA from the center of the Earth, and B at rB, 
the gravitational potential energy difference for a mass m = 1 is 

 ( ) ( ) 2 2

ˆ 1 1 .
B B

A A

r r

B A E E E
B Ar r

r ds drU r U r GM GM GM
r r r r

 ⋅
− = = = − 

 
∫ ∫






 

 

The very reasonable convention is to take the zero of gravitational potential energy to be at infinity, 
because in calculating total potential energies, we don’t want to have to take account of stars in the 
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next galaxy. This means that, outside the Earth’s surface, the gravitational potential energy from the 
Earth’s field is  

 ( ) , .E
E

GMU r r r
r

= − >


 

A mass resting at the Earth’s surface has therefore a negative total (potential plus kinetic) energy, a 
mass at rest far away has essentially zero total energy—so to get a mass away from the Earth it must be 
given a kinetic energy sufficient to get it up this potential hill, this corresponds to the escape velocity. 

Point Charges and Superposition 
Since the electric field is identical in form to the gravitational field, the derivation of gravitational 
potential energy reviewed above is easily translated into electrostatic potential energy, always bearing 
in mind that positive and negative charges will have potential energies of opposite sign! 

The electrostatic potential difference between two points in the field of a point charge Q (or outside a 
spherically symmetric charge distribution having total charge Q) is: 

2 2
0 0 0

ˆ 1 1 .
4 4 4

B B B

B A

A A A

r r r

r r
B Ar r r

Q r ds Q dr QV V E ds
r r r rπε πε πε

 ⋅
− = − ⋅ = − = − = − 

 
∫ ∫ ∫
 

 

 






 

That is, the potential difference is the work done against the electric field per unit charge on moving a 
charge from point A to point B. 

For a point charge, it is clear that for small enough r  the formula must break down (there cannot be 
infinite energies) but even for electrons within atoms  it’s  very accurate.  (It does break down at 
electron scattering energies reached in particle accelerators, but the process is well understood—the 
electromagnetic interaction between the point electrons becomes more complicated.) 

Thus the potential  in the electric field of a point charge is (taking it zero at infinity): 

 ( )
04

QV r
rπε

=


 

Notice the sign!   

If a positive charge is released in the field of a fixed positive charge, it will shoot away, and have kinetic 
energy far away.  This is the opposite of the “escape velocity” scenario—that applies for a negative 
charge in the field of a fixed positive charge. 

The Principle of Superposition works for potential energies just as it does for electric fields, since the 
potential energy difference is the sum of contributions from the different fields in the integral, so 
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( ) 31 2

0 1 2 3

1
4

QQ QV r
r r rπε

 
= + + + 

 



  

and for continuous charge distributions, the sum becomes an integral. 

Getting the Electric Field from the Potential 
It’s often easier to compute the potential than find the electric field for a given charge distribution, 
since, for the field, one must sum over vectors.  So, suppose we have the potential as a function of 
position.  How do we use it to get the electric field at a particular point (x, y, z)? 

Write the formula for potential difference between two points separated by an infinitesimal distance dx: 

 ( ) ( )
( )

( ), ,

, ,

, , , ,
x dx y z

x
x y z

V x dx y z V x y z E ds E dx
+

+ − = − ⋅ = −∫




 

from which 

 
( ), ,

x

V x y z
E

x
∂

= −
∂

 

where the special derivative symbol means partial differentiation: V is a function of three variables, but 
we’re holding two of them constant—only allowing x to vary. 

This formula, plus those in the other two directions, are often combined in a vector notation, written: 

 ,  or .E V E V= −∇ = −grad
  

 

In other words, the electric field in a particular direction is the negative of the slope of the potential in 
that direction: it’s worth looking at a couple of examples to see this in action. 

First, consider two equal positive charges, let’s say on the x-axis at +a and –a, and think about the 
electric potential and electric field on the axis.  This keeps it simple: the electric field points along the 
axis.   The potential plotted along the x-axis looks like: 
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Over to the far right, the potential is sloping downwards, so the E


field is pointing in the positive x-
direction.  Exactly half way between the charges, the potential bottoms out, that is, its slope is zero: so 
the electric field is zero at that point—not surprising, since a small positive charge there will be repelled 
equally by the two positive charges.  In fact, the electric field changes sign (along with the potential 
slope) on going through that point.  Note as well, though, that the value of the potential at that low 
point is not zero: if we moved away from that point in the y-direction, it would still be downhill.  (Check 
that by finding the electric field direction at a point on the y-axis.)  

The second example is a positive charge at +a, a negative charge at –a on the x-axis.  Now the potential 
along the axis looks like this: 

Potential from two equal positive charges plotted on line through center of charges 

V(x) 
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In this case, the electric field between the two charges is strong and in the negative x-direction.  

Potential along line of centers of two equal but opposite charges 
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