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Physics 2415 Lecture 5:  Using Gauss’ Theorem: Spheres, Lines, Planes 
Michael Fowler, UVa, 9/8/09 

Taking Advantage of Symmetry 
In general, integrating a vector flux over a surface is a daunting task, but in certain symmetric cases it’s 
very easy, and can then be used to find electric fields much more easily than by adding contributions 
from large (or infinite, in the case of a continuous distribution) numbers of separate charges. 

Spherical Shell 
 A good example is finding the electric field from a uniformly charged spherical shell, say charge Q and 
radius R.  Since the sphere is uniformly charged, it has perfect spherical symmetry, it is not altered by 
turning the sphere through some angle.  Therefore, the electric field must also be spherically symmetric.  
The only spherically symmetric electric field has the field pointing directly outwards (or inwards) from 
the center at all points.  

Let’s apply ( ) 0
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to a spherical surface of radius r bigger than the sphere of charge, but with the same center.  

The field E
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strength everywhere on the sphere, by symmetry.  The total area of the sphere is 24 rπ , so the integral 

is equal to 24 r Eπ , and outside the sphere of charge: 
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the same as for a point charge at the center.  It’s worth mentioning that since gravity is also an inverse 
square force, this same result is true for the gravitational field from a spherical shell of mass. (This can 
be proved using Coulomb’s Law or its gravitational equivalent, but it’s quite difficult—it’s done here.) 

What about the electric field inside the sphere?  We do the same trick: integrate over a spherical surface 
with the same center as the sphere of charge.  This time, though, there is no charge inside our smaller 
spherical surface, so the electric field must be exactly zero inside the sphere. 

The complete picture of the electric field for a uniformly charged shell  is therefore: 
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Solid Sphere 
The key for any spherically symmetric charge distribution is superposition:  the distribution can be 
expressed as the sum of (or integral over) spherical shells.  The contribution from each shell is zero 
inside that shell, and equal to that from a point charge at the center outside the shell.  So, for the case 
of a uniformly charged (throughout the volume) sphere, outside the whole sphere the field is the same 
as if all the charge were at the center, inside the solid sphere, at distance r from the center, it’s the same 
field as from a point charge at the center equal to the amount of charge in a sphere of radius r : in other 
words, there is no contribution from those shells the point is inside.  This uniformly charged sphere is 
not a likely object to find in electrostatics, but it is exactly equivalent to the gravitational field for a 
sphere of uniform density, a much more realistic problem.  And, in fact, the electrostatic uniformly 
charged sphere was a subject of intense interest a century ago, as a possible model for the atom: before 
the nucleus was discovered, but it was already known that the atom contained negatively charged 
electrons, it was suggested that the positive charge was spread over a sphere, and the electrons were 
inside this sphere: this was called the plum pudding model.  
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Electric field vectors for a uniformly 
negatively charged  spherical shell 

no field in 
shell 
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Electric field vectors and Gaussian surface 
of integration for a positively charged 

infinite straight wire 

For a nonuniform spherical distribution, the same approach works: the field at any point is equivalent to 
a point charge at the center equal to all the charge between the point and the center. 

Lines and Cylinders of Charge 
Gauss’ theorem works well for finding the electric field from an infinite uniform line of charge. From 
symmetry, the field lines must be directed perpendicularly to the line of charge, and the field strength 
can only depend on distance from the wire.  For our Gaussian surface, we take a cylinder of length one 
meter and radius r, the wire running along the axis of the cylinder.   

The total area of the cylinder is 2 rπ
so, using 

0
surface

. (enclosed charge)/E dA ε=∫



 

the enclosed charge, 
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(Easier than using Coulomb’s Law for 
the field from each increment of charge and integrating!) 

This same method applies for finding the electric field from a uniformly charged cylinder of charge.  Just 
imagine the wire in the picture above being replaced by a fatter wire, then by a hollow cylinder, but 
staying inside the Gaussian cylindrical surface we integrate over.  We get the identical result for E(r), 

now we must interpret λ as the charge on one meter of the whole cylinder.  If this is a hollow cylinder, a 
pipe, taking a Gaussian surface inside it, the surface encloses no charge, so the electric field inside a 
hollow cylinder from the charge on the cylinder is zero. 

Coaxial Cable  
Of course, we could add a line of charge, or even another cylinder, inside our charged cylinder, in which 
case the total electric field would be the sum of the electric fields from the two cylinders, using 
superposition.  In fact, this is a coaxial cable, the cable used to transmit TV signals. etc.  A coaxial cable 
(the word means “same axis”) has a central copper wire, inside a hollow copper cylinder (see figure 
below).  Between the two is a nonconducting dielectric—we’ll discuss dielectrics shortly.  The 
transmission of electromagnetic waves, the TV signal, is of course not an electrostatic situation, but 
nevertheless Gauss’ Law still holds, and at any moment there are equal amounts of charge per unit 
length of cylinder on the surface of the central wire and the inner surface of the cylinder, and 
consequently an electric field as shown (there are also currents in the copper producing magnetic 
fields—more about that later).   
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Typical electric field configuration in a coaxial cable, 
usually a copper cylinder and a central copper wire.  
The charge is on the outside surface of the inner 
conductor, the inside surface of the outer conductor. 

 
The electromagnetic fields are 
entirely contained inside the cable, 
in contrast to signals sent down a 
pair of wires, and the outer cylinder 
protects the signal from external 
interference (and makes 
eavesdropping more difficult—you’ll 
have to cut into the cable).    

 

 

 

 

 

 

Uniformly Charged Plane 
Gauss’ Law makes it extremely easy to find the electric field from a uniformly charged plane, in contrast 
to the tedious integration necessary using Coulomb’s law to find the electric field from each little area of 
the plane and taking the sum. 

 

From symmetry, taking the plane to have infinite extent, the field must be perpendicular to the plane as 
shown above, where the plane of charge is seen in cross section, that is, the plane is perpendicular to 
the paper.   Of course, the charge is distributed uniformly over the plane, with area density σ coul/m2.  
To use Gauss’ Law, we choose a surface shaped like a pillbox, represented in cross section by the 

E


 

Electric field from a uniform plane of charge 
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rectangle above.  The top and bottom surfaces both have  area A, and an area A of the charged plane is 
included.  The electric field is parallel to the area vectors on both the top and bottom surfaces, so the 

total contribution from those surfaces to 2E dA EA⋅ =∫




.  There is no contribution to the integral from 

the sides of the pillbox, as the electric field is parallel to those sides, thus E dA⋅




 is zero there.  It follows 
immediately that  

 0 0
surface

2 / , so  / 2 .E dA EA A Eσ ε σ ε⋅ = = =∫




 

For an actual physical finite plane of charge, this value of E is a good approximation at points close to the 
surface relative to the size of the plane.   For distances large compared to the extent of the plane, the 
field becomes more like that from a point charge.  

Parallel Charged Planes; Insulating and Conducting 
A much more common scenario is to have two parallel sheets of charge, one positive and one negative, 
having the same charge density.   

Let us consider first the case where both sheets are insulators, the charge has been sprayed on.  On 
bringing the two sheets close, the charges will be unable to move, and the electric fields from the two 
planes add, from the Principle of Superposition, giving: 

 

Actually, in practice, the sheets are usually conductors—in fact, almost all capacitors have this basic 
structure.   

To see how charges move around as conducting charged sheets are brought close, we’ll first look at the 
charge distribution on a single isolated conducting sheet of finite thickness—the charges repel each 
other, and form equal layers on the two sides: 

E


 

Electric field from two uniform parallel planes of charge: one positive, one 

negative, with equal charge densities σ : the field 0/E σ ε=  between the 

planes, 0E =  outside the planes. 
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Suppose we now take two such conducting planes with equal charge densities, but of opposite signs, 
and put them close and parallel.  What happens?   

The positive and negative charges will attract each other, and move to be as close together as possible. 
That is, all the charges will move to the inside surfaces of the conductors: 

 

Note the charge density σ on the lower conductor’s top surface generates a field of strength 0/σ ε . 

This can be understood by considering a pillbox Gaussian surface which encloses that top surface (see 
diagram):  the Gaussian surface has field E from its top, but no electric field through its bottom, which is 
inside the conductor, where E = 0. 

E


 

Electric field for two uniformly charged plane conductors of finite 
thickness: no field inside the conductors, or outside the two planes: the 
charges are moved to the inside surfaces by their mutual attraction. 

E


 

Electric field from a uniformly charged plane conductor of finite thickness:  
in the electrostatic situation, there is as always no field inside the 
conductor, the charges form equal layers on the two sides 
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Surface Charge on Conductors 
The relation between charge density on the surface of a conductor and the electric field just outside the 

conductor, 0/E σ ε= , derived in the previous example, is in fact true in general.  That is, any charged 

conductor in an electrostatic situation has a surface charge density, and the electric field immediately 

outside the surface is perpendicular to it and has strength 0/σ ε .  Even if the surface is not locally flat, a 

small enough Gaussian pillbox surface can be drawn to prove this.  Remember there is no electric field 
inside the conductor.  

The absence of an electric field inside the conductor means there can be no net charge contained in any 
closed surface lying entirely inside the conducting material.  If there are holes in the material inside this 
surface, and charge is placed in these holes, charges will move inside the conductor to the surfaces of 
these holes, to exactly compensate for the charges placed in the holes.  Lines of force from these added 
charges will terminate at the surfaces of the holes. 
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