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Force of a Stretched Spring

• If a spring is pulled to 
extend beyond its 
natural length by a 
distance x, it will pull 
back with a force

where k is called the 
“spring constant”.

The same linear force is 
also generated when the 
spring is compressed.
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Mass on a Spring

• Suppose we attach a 
mass m to the spring, 
free to slide backwards 
and forwards on the 
frictionless surface, then 
pull it out to x and let go.

• F = ma is:

• A
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F kx= −
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2 2/md x dt kx= −



Solving the Equation of Motion
• For a mass oscillating on the end of a spring, 

• The most general solution is

• Here A is the amplitude, f is the phase, and by 
putting this x in the equation,  mω2 = k, or

• Just as for circular motion, the time for a 
complete cycle  

2 2/md x dt kx= −

( )cosx A tω φ= +

/k mω =

1/ 2 / 2 /    (  in Hz.)T f m k fπ ω π= = =



Energy in SHM: Potential Energy 
Stored in the Spring

• Plotting a graph of external 
force F = kx as a function of x, 
the work to stretch the spring 
from x to x + Δx is force x 
distance

• ΔW = kxΔx, so the total work 
to stretch the spring to x0 is

• A

0
21
02

0

x

W kxdx kx= =∫

x
x0

F

0

kx0
Δx

kx

This work is stored in 
the spring as potential 
energy.



Potential Energy U(x) Stored in Spring

• The potential energy 
curve is a parabola, its 
steepness determined by 
the spring constant k. 

• For a mass m oscillating 
on the spring, with 
displacement

the potential energy is

• X
U(x)

U(x) = ½kx2

x0( )cosx A tω φ= +

( ) ( )2 21
2 cosU x kA tω φ= +



Total Energy E for a SHO
• The total energy E of a mass 

m oscillating on a spring 
having constant k is the sum
of the mass’s kinetic energy 
and the spring’s potential 
energy:

• E = ½mv2 + ½kx2

• For a given E, the mass will 
oscillate between the points   
x = A and –A,  where 

• E = ½kA2

• Maximum speed is at x = 0, 
where U(x) =0, and 

E = ½mv2 at x = 0

• X

E = K + U   

U(x) = ½kx2

x0 A-A



Mass Hanging on a Spring

• Suppose as before the 
spring constant is k.

• There will be an 
extension x0,  kx0 = mg, 
when the mass is at rest.

• The equation of motion 
is now:

• with solution
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The Simple Pendulum
• A simple pendulum has a bob, 

a mass m treated as a point 
mass, at the end of a light 
string of length ℓ.

• We consider only small 
amplitude oscillations, and 
measure the displacement     
x = ℓθ along the circular arc.

• The restoring force is
F = -mgsinθ ≅ -mgθ along 
the arc.

• v
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F = ma for the Simple Pendulum

• The displacement along the 
circular arc is x = ℓθ.

• The restoring force is
F = -mgsinθ ≅ -mgθ = -mgx/ℓ
along the arc.

• F = ma is
d2x/dt2 = −gx/ℓ

(canceling out m from both 
sides!).
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Period of the Simple Pendulum

• The equation of motion

has solution

• Here 

and the time for a complete 
swing

• v

ℓ
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( )cosx A tω φ= +

/gω = 

2 / 2 / .T gπ ω π= = 

2 2/ /d x dt gx= − 

The time for a complete swing 
doesn’t depend on the mass m, 
for the same reason that different 
masses fall at the same rate.



Reminder: the Conical Pendulum

• Imagine a conical pendulum in 
steady circular motion with small 
angle θ.  

• As viewed from above, it moves 
in a circle, the centripetal force 
being                       .

• So the equation of motion is

and for the x-component of  
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The SHO and Circular Motion
• We can now see that the equation 

of motion of the simple pendulum 
at small angles—which is a simple 
harmonic oscillator

is nothing but the x-component of  
the steady circular motion of the 
conical pendulum

• The simple pendulum is the 
shadow of the conical pendulum!
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The Physical Pendulum

• The term “physical pendulum” 
is used to denote a rigid body 
free to rotate about a fixed 
axis, making small angular 
oscillations under gravity.

• Taking the distance of the CM 
from the axis to be h, at (small) 
angle displacement θ,  the 
torque is

• v
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τ = Iα for the Physical Pendulum

• In the small angle  approximation, 
the equation of motion τ = Iα is

• with solution

• and 

• Remember this is Iaxis = ICM + mh2! 
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