Angular Momentum

Physics 1425 Lecture 21

Michael Fowler, UVa

A New Look for $\tau = I\alpha$

- We've seen how $\tau = I\alpha$ works for a body rotating about a fixed axis.
- <u>τ = Iα is not true in general</u> if the axis of rotation is *itself* accelerating
- BUT it IS true if the axis is through the CM, and isn't changing direction!
- This is quite tricky to prove—it's in the book

• And $\tau_{CM} = I_{CM} \alpha_{CM}$ is often useful, as we'll see.

Forces on Hoop Rolling Down Ramp

Take no slipping, so
 ν = Rω, a = Rα

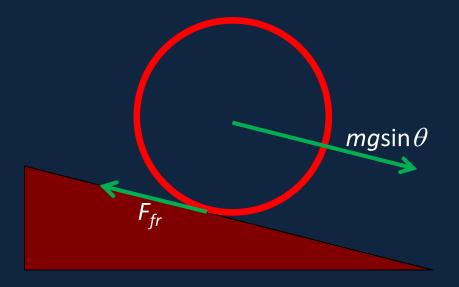
ightarrow

Translational accn *F* = *ma*:

 $mg\sin\theta - F_{fr} = ma$

- Rotational accn $\tau_{CM} = I_{CM} \alpha_{CM}$: $F_{fr}R = mR^2 \alpha = mRa$ so $F_{fr} = ma$ and $mg \sin \theta = 2ma$,
- $a = (g \sin \theta)/2$:

the acceleration is **one-half** that of a sliding frictionless *block—and independent of mass or radius*.



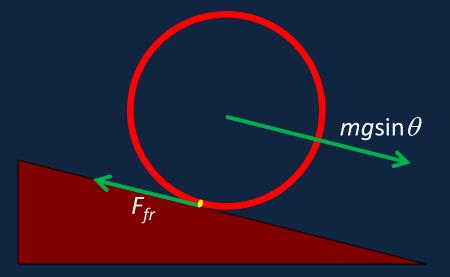
The only force having torque about the center of the hoop (its CM) is the frictional force: the total gravitational force and the normal force both act through the center.

Yet Another Look at That Hoop...

Take no slipping, so

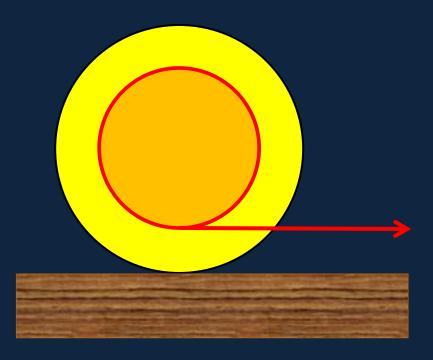
 $v = R\omega, a = R\alpha$

- Since there's no slipping, the point on the hoop in contact with the ramp is momentarily at rest, and the hoop is rotating about that point.
- The only torque about that point is gravity— $\tau = mgR\sin\theta$
- The moment of inertia about that point, from the parallel axis theorem, is $I_{\rm CM} + mR^2 =$ $2mR^2$, so $mgR\sin\theta = 2mR^2\alpha$, and $a = \alpha/R = (g\sin\theta)/2$.



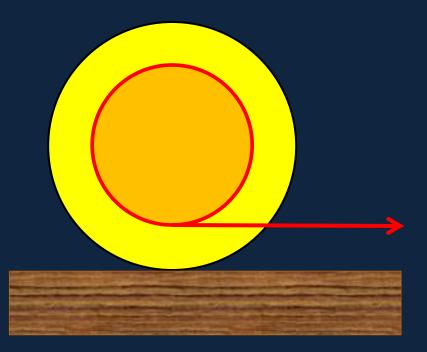
Clicker Question

- A wooden yo-yo with red string rests on a table top.
 I pull the string horizontally from the bottom. What will the yo-yo do? (Assume ordinary smooth wood.)
- A. Roll towards me.
- B. Roll away from me.
- C. Slide towards me.



Clicker Answer

 A wooden yo-yo with red string rests on a table top.
 I pull the string horizontally from the bottom. What will the yo-yo do? (Assume ordinary smooth wood.)

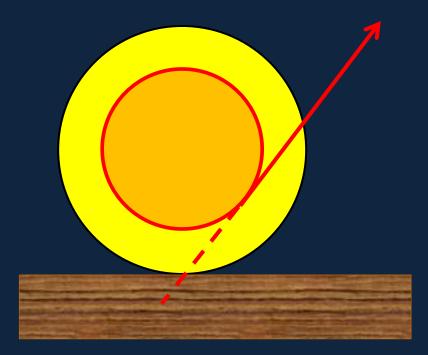


- A. Roll towards me.
- B. Roll away from me.
- C. Slide towards me.

The key is to measure torque about the stationary point of contact of the yo-yo with the table. Clearly the torque is clockwise!

Clicker Question

- A wooden yo-yo with red string rests on a table top.
 I pull the string along a line that passes through the point of contact. What will the yo-yo do? (Assume ordinary smooth wood.)
- A. Roll towards me.
- B. Roll away from me.
- C. Slide towards me.



Varying Moment of Inertia

- Recall Newton wrote his Second Law F = dp/dt, allowing m to vary as well as v.
- We should write the rotational version
- τ = d(Iω)/dt, and in fact
 varying I's are far more
 common than varying
 m's.

Clicker Question

- Assume that when she pulls herself inwards, the angular velocity increases by a factor of 3.
- What happens to 1: total angular momentum and 2: rotational kinetic energy?
- A. No change, no change
- B. No change, x3 increase.
- C. x3 increase, x3 increase
- D. x3 increase, x9 increase

Torque as a Vector

- Suppose we have a wheel spinning about a fixed axis: then *a* always points along the axis—so
 da / *dt* points along the axis too.
- If we want to write a vector equation

 $\vec{\tau} = I\vec{\alpha} = Id\vec{\omega}/dt$

it's clear that the vector $\vec{\tau}$ is parallel to the vector $d\vec{\omega}/dt$: so $\vec{\tau}$ points along the axis too!

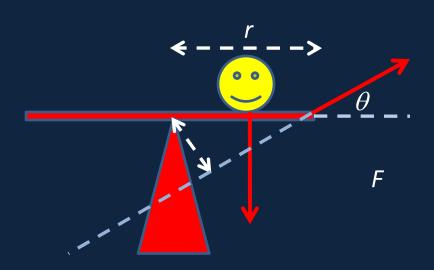
BUT this vector *t*, is, remember made of two other vectors: the force *F* and the place *r* where it acts!

Recalling an Earlier Torque

 Only the component of F perpendicular to the arm exerts torque

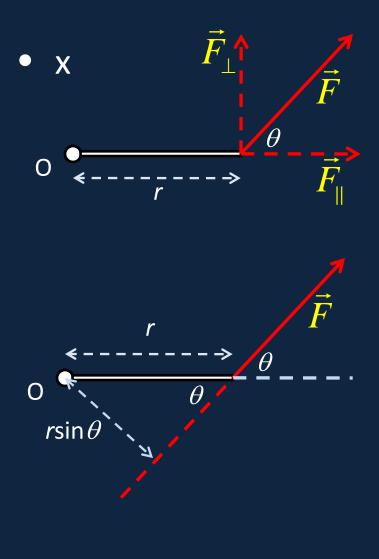
 $\tau = rF\sin\theta$

- We can see the direction of $\vec{\tau}$ is perpendicular to both \vec{F}, \vec{r} and towards us.
- We define the vector cross product $\vec{\tau} = \vec{r} \times \vec{F}$ to have this direction, and magnitude $rF \sin \theta$.



More Torque...

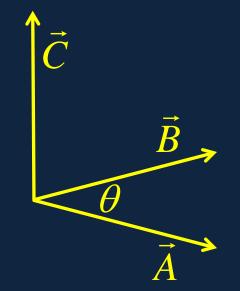
- Expressing the force vector F as a sum of components \vec{F}_{\parallel} ("fperp") perpendicular to the lever arm and \vec{F}_{\parallel} parallel to the arm, it's clear that only \vec{F}_{μ} has leverage, that is, torque, about O. $F_{\rm I}$ has magnitude Fsin θ , so $\tau = rF\sin\theta$.
- Alternatively, keep \vec{F} and measure *its* lever arm about O: that's $r\sin\theta$.



Definition: The Vector Cross Product

 $\vec{C} = \vec{A} \times \vec{B}$

- The magnitude *C* is *AB*sin θ , where θ is the angle between the vectors \vec{A}, \vec{B} .
- The direction of \vec{C} is perpendicular to both \vec{A} and \vec{B} , and is your right thumb direction if your curling fingers go from \vec{A} to \vec{B} .

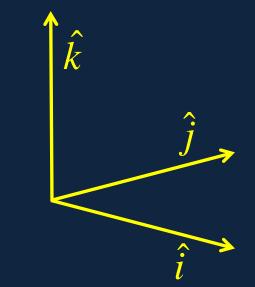


Clicker Question Assume \vec{A}, \vec{B} are nonzero vectors. Which pair of statements below is correct?

- A. The cross product depends on the order of the factors, and since both vectors are nonzero, it can never be zero.
- B. Depends on order , can be zero.
- C. Doesn't depend on order, cannot be zero.
- D. Doesn'tg depend on order, can be zero.

The Vector Cross Product in Components

• Recall we defined the unit vectors $\hat{i}, \hat{j}, \hat{k}$ pointing along the x, y, z axes respectively, and a vector can be expressed as $\vec{A} = A_x\hat{i} + A_y\hat{j} + A_z\hat{k}$



• Now $\hat{i} \times \hat{i} = 0$, $\hat{i} \times \hat{j} = \hat{k}$, $\hat{i} \times \hat{k} = -\hat{j}$,... • So

$$\vec{A} \times \vec{B} = \left(A_x\hat{i} + A_y\hat{j} + A_z\hat{k}\right) \times \left(B_x\hat{i} + B_y\hat{j} + B_z\hat{k}\right)$$

$$=\hat{i}\left(A_{y}B_{z}-A_{z}B_{y}\right)+\ldots$$