
THE VELOCITY DEPENDENCE OF AERODYNAMICDRAG: A PRIMER FOR MATHEMATICIANSLYLE N. LONG and HOWARD WEISSThe Pennsylvania State University1. Introduction. If you pick up nearly any elementary ordinary di�erential equationstext or calculus text, you are likely to �nd a short section, or at least a problem, onthe motion of a body subject to some type of drag force along with a calculation of thebody's terminal velocity. Two favorite examples seem to be the motion of a projectilelike a baseball and the motion of a skydiver/parachutist, both through the air. By askydiver we mean a person falling without his parachute open. Most textbook authorsmodel the motion of these objects using a drag force that depends linearly in the velocity.Unfortunately, the physical assumption about the linear dependence of the drag force onvelocity is often incorrect, and thus the model's predictions are physically implausible.In particular it was surprising to see the faulty linear resistance model for a parachutist'svelocity used in the popular calculus reform text by Hughes-Hallet, Gleason, et al. [9, p.515], since the reform movement prides itself on concern for realistic applications. The �rstedition of this text even supplied non-referenced observed data to �t its linear model. Theauthors state \The fact that there is good agreement between the observed and predicteddata suggest that our assumption about the air resistance is reasonable." The recentsecond edition omits the table of observed data but not the awed model.The purpose of this note is to explain the dependence of the drag force on velocity fora general mathematical audience and to present a few realistic models. Section 5 containsan interesting model (with a closed form solution) for re-entry of the space shuttle into theearth's atmosphere.Dimensional analysis is an important tool in aerodynamics and uid dynamics, and canbe used to obtain key results (5) and (6). To help give mathematicians some insight intothe spirit of this important technique, we present in Section 6 an amusing application ofdimensional analysis to prove the Pythagorean Theorem.The science of modeling drag is more physical and empirical than mathematical, andit relies on the results of many wind-tunnel experiments. There has been a signi�cantamount of theoretical work in the engineering literature, but few of the results can beconsidered completely rigorous by mathematical standards. There are also large gaps inour understanding of basic properties of the Navier Stokes equation. In particular, thereare important unsolved problems on the large-time existence and uniqueness of solutionsof the Navier-Stokes equation in three dimensions. Typeset by AMS-TEX1



For detailed information on the aerodynamics and uid mechanics pertinent to thispaper, see [7], [8], [11], [12], [19], and [22].2. The Basic Equations of Motion. Any body moving through a uid such as wateror air creates a drag force that tends to retard its motion. Such motion is usually describedby the Navier-Stokes (nonlinear partial di�erential) equations. In elementary textbooks,the motion is always assumed to be one dimensional, e.g., the ball is dropped and theskydiver has no horizontal movement and there is no wind. We observe in Section 4 thatthis assumption does not permit modeling of a modern parachute. Many (if not most)elementary mathematics textbook authors assume that the drag force for a baseball orskydiver/parachutist moving in air is proportional to the velocity v of the falling body,and at least one leading freshman physics text makes this assumption. This leads to thelinear di�erential equation of motionmdvdt = mg � k1v; (1)where k1 is a constant (whose physical meaning is rarely discussed), m is the mass of thebody, and g is the gravitational constant. This linear di�erential equation can be solvedeasily to obtain the body's velocity as a function of time, beginning at rest:v1(t) = mgk1 (1 � exp(�k1t=m)); v1(0) = 0: (2)The terminal velocity is limt!1 v1(t) =mg=k1. This terminal velocity is just the equilib-rium solution of (1) and could have been obtained easily directly from (1) without explicitlysolving the di�erential equation since physically, the terminal velocity corresponds to themotion when the drag force precisely equals the weightmg of the falling object. While thismodel may be correct for bodies that are falling in a vat of heavy oil or for tiny particles ofdust or aerosol in air, it is grossly incorrect for large bodies falling in air. Any such simplemodel is necessarily a great simpli�cation of the Navier-Stokes equations for the actualmotion of a ball or skydiver.Calculations predict and experiments con�rm that in air, the drag force on a ball or askydiver/parachutist can be well approximated by a force that is proportional to the squareof the velocity v2 (and not to the velocity v). The v2 model for the drag force leads to thenonlinear equation of motion mdvdt = mg � k2v2; (3)where k2 is a constant. This is a separable equation, which can be solved easily to obtainthe body's velocity as a function of time, beginning at rest:v2(t) =rmgk2 tanh trk2gm ! ; v2(0) = 0: (4)The terminal velocity is limt!1 v2(t) = pmg=k2, which is just the equilibrium solutionof (3) and could have been obtained easily directly from (3).2



Table 1 contains the experimentally determined terminal velocities for various objectsmoving through the air. There is a wide range of values for the terminal velocity ofa skydiver because the terminal velocity strongly depends on his body position and isconsiderably higher (almost by a factor of two) during a head �rst nose dive or feet �rstdive than during a fall in the spread eagle belly-to-Earth position. The former positionsare highly unstable and are di�cult to maintain for more than a few seconds. In orderto minimize the strong shock to the body at deployment, beginners typically reduce theirfree fall speed to about 50 m/s before deploying their parachute.Object Weight (kg) Terminal Velocity (m/s)iron ball (shot) 7.3 145Skydiver 72.6+19 (equipment) = 91.6 45 to 80+Football 0.41 45Baseball 0.15 42Golfball 0.05 40Softball 0.18 80Tennis ball 0.06 36Basketball 0.6 20Ping-Pong ball 0.003 9Parachutist (round canopy) 72.6 + 19 (equipment) = 91.6 5Table 1: Approximate terminal velocities for various ob-jects (from Table 9.1 in [4])3. Small and Large Reynolds Numbers Flows. In general, the drag force dependson many factors including the density and viscosity of the uid, and the geometry, surfacematerial, surface regularity, and velocity of the body. The dimensionless Reynolds numberof the uid plays a key role in determining the drag force, and is de�ned byR = � d v� ; or R = d v� ;where � is the density of the uid, v is the velocity of the body in the uid, � is the viscosityof the uid, � = �=�, and d is a characteristic length (see Table 2). This characteristiclength could be a radius, a diameter, a chord length, a body length, etc. depending onwhat aspect of the problem one is studying. Note that a slowly moving object may havea large Reynolds number if the object is large or the viscosity is small. Turbulent ows3



are typically associated with large Reynolds numbers, while laminar ows are typicallyassociated with small Reynolds numbers.Object Characteristic Length Typical Reynolds NumberSubmarine Length 300,000,000Small aircraft Chord 5,000,000Parachutist Diameter 2,500,000Skydiver Diameter 1,000,000Baseball Diameter 250,000Model airplane Chord 50,000Buttery Chord 7,000Dust particle Diameter 1Table 2: Typical Reynolds numbers for various objects mov-ing in airIf the Reynolds number is small, meaningR < 1, the Navier-Stokes equation is consider-ably simpli�ed and the equation of motion reduces to a linear partial di�erential equation.Strictly speaking, one should assume R << 1, but the approximation is often reasonablefor R � 1. Stokes analyzed this linear di�erential equation and found the following formulafor the drag force, FD, on a sphere of radius r moving in the uid [21, p. 217]:FD = 6� � r v: (5)This expression is exact in the limit as the Reynolds number goes to zero. Thus, the dragforce is proportional to the velocity and the radius of the sphere. Since the uid densitydoes not appear in the linear partial di�erential equation, the form of formula (5) canalso be obtained with simple dimensional arguments: if the drag force depends only on�, r, and v, one shows the only function of these quantities that has the units of force isFD = C �r v, where C is a constant. A rigorous argument can be based on the Pi theoremof Vaschy and Buckingham [1, p. 42], [2], [3].Formula (5) can be extended to ows with non-zero Reynolds number. Using techniquesin the theory of matched asymptotic expansions, the Stokes approximation (5) can beimproved [17] to an asymptotic expansion of the formFD = 6� � r v�1 + 38R+ 940R2 logR+O(R2)� :Table 3 contains the values of � and � for oil, water, and dry air at 100o F. It is knownthat the viscosity of oils increases rapidly with decreasing temperature.4



Medium � (kg/m sec) � (m2/sec)castor oil 0.29 2:8� 10�4water 0:686� 10�3 0:691� 10�6dry air 0:19� 10�4 1:9� 10�5Table 3: Typical values of � and � at 100 degrees FIt has been determined experimentally that (5) is valid for Reynolds numbers R < 1and that a similar dependence occurs in this range of R for bodies with other shapes, i.e.,the drag force FD � constant� �v;where the constant is independent of v. This can be rewritten as FD = k v; wherek = constant � � (see (1) and (2)). From Table 2 we see that baseballs and sky-divers/parachutists have R >> 1.There are some interesting implications of low Reynolds number ows in biology. Inparticular, [20] describes the role of terminal velocity in pollen dispersal, while [6] answersthe question \Why are there so few aerial plankton?" by explaining how high atmosphericterminal velocities confound the ability of turbulence to keep organisms aoat.Although there are interesting ows where the drag depends linearly on velocity, theyare typically associated with small objects such as raindrops, dust particles, etc. Thebook [14] contains a discussion of modeling falling raindrops over a wide range of Reynoldsnumbers.When the Reynolds number is large, but not too large, the ow may remain laminar.These cases can be studied using the Navier-Stokes equations in the thin boundary layeraround the body where this ow is assumed to be laminar. The resulting equations arecalled Prandtl's equations [11] and one can conclude that (at least for a certain range ofR) the drag force is independent of the viscosity. One then uses facts about the Bernoulliequation or dimensional analysis to conclude thatFD � constant� �Av2; (6)where the constant depends only on the shape and surface characteristics of the body.Numerous experiments in wind tunnels and in aircraft ight tests during the past 80 yearshave veri�ed that this formula is valid for Reynolds numbers between 3� 102 and 3� 105.For ows in the range of Reynolds numbers, it is customary to introduce the dragcoe�cient, CD, which is the dimensionless quantity de�ned byCD � FD12 �Av2 : (7)With this de�nition and (6), we have CD = constant, i.e., the drag coe�cient dependsonly on the shape and surface characteristics of the body and the Reynolds number. Thus5



in (3) and (4), the constant k = 12 CD �A. Furthermore, the dynamic pressure q � 12 � v2plays a fundamental role in aerodynamic theory [7]. For instance, when the space shuttleChallenger exploded, it was operating in a high dynamic pressure regime. Very fast aircraftneed to operate at high altitude (where � is relatively small) to avoid excessive dynamicpressure and catastrophic damage to the aircraft.For smooth spheres having Reynolds numbers in the range 103 to 3 � 105, the dragcoe�cient is approximately 0:47, while for Reynolds numbers greater than 3�105, the dragcoe�cient is approximately 0:20 (see Figure 1). The text [22] contains a good expositionof sphere drag for R between 1 and 106.

Figure 1: Drag coefficient CD for a sphere as a function ofReynolds number R (from Figure 32 in [11])It follows from (4) and (7) that the terminal velocity for a sphere falling in air isapproximately vT =s 2W�CD �r2 ;where W is the weight of the sphere, � is the density of air at sea level, and r is theradius of the sphere. The density � is a complicated function of temperature, humidity,and pressure (which varies with altitude) so this equation is only an approximation.The motion of a baseball, with its rough surface, is actually considerably more compli-cated to model accurately than the motion of a smooth sphere [13].6



4. Skydiving and Parachuting. We now discuss the motion of a skydiver and aparachutist; useful technical references are [8], [10], [15], and [16]. Just as for a spherefalling in air, the terminal velocity for a skydiver is approximatelyvT =s 2W�CDA; (8)where W is the combined weight of the skydiver and parachute, A is the e�ective cross-sectional area of the skydiver, and the density of air is � = 1:225 kg/m3. Solving for thedrag coe�cient CD we obtain CD = 2W�Av2T = WqA; (9)where q is the dynamic pressure corresponding to terminal velocity.If a 72.6 kg skydiver carrying a 19 kg load (91.6 kg = 867 N) attains a terminal velocityof 49 m/s (in the belly-to-earth position) and has a cross-sectional area of 0.56 m2, itfollows from (9) that CD � (2� 867)=(1:225� 0:56� 492) = 1:05.Moreover, if our skydiver attains a terminal velocity of 67 m/s (in the head down or feetdown position) and has a cross-sectional area of 0.2 m2 in this position, it again followsfrom (9) that CD � (2 � 867)=(1:225 � 0:2 � 672) = 1:57. Actually, even if the skydivercould maintain the head down or feet down position over a long period of time, his rate ofdescent would continually slow due to the increasing density of air at lower altitudes.In the 1960s, a 72.6 kg beginner sport parachutist might have used a circular parachutewith a canopy area of 74.8 m2, and would have carried about a 22.7 kg load (95.3 kg = 934N) [15]. The parachute would have had CD � 0:8. It follows from (8) that the terminalvelocity for the parachutist is approximately [(2� 934)=(1:225� 0:8� 74:7)]1=2 = 5.1 m/s.Many measurements have con�rmed that this prediction is quite a close approximation tothe actual terminal velocity.The sport parachutes used today bear little resemblance to the old classical roundcanopies, although the latter are still preferred by the military. The military's roundcanopies also have a relatively small area, which results in much harder landings than withmodern sport canopies. Today, nearly all jumpers use either square (actually rectangular)or elliptical canopies, made from a non-porous material. When open, these canopies actlike an airplane wing or an airfoil, and generate lift throughout the ight; they do notwork by drag alone and are more like gliders than umbrellas. In addition, these modernsquare or elliptical canopies actually have brakes that the parachutist can apply close tothe ground to achieve a gentle landing. Because of the lift that these canopies generate,their motion can not be modeled solely by the simple v2 drag force model with the forceparallel to motion.However, we can obtain a reasonable model of a modern parachute by adding an extraterm to (3) corresponding to the lift generated by the canopy. These are the same equationsthat are used to model ight of an unpowered airplane (a glider) or re-entry of the spaceshuttle into the earth's atmosphere. The force due to lift, FL, is proportional to the squareof the velocity, but now it is important to consider the horizontal component of motion{thus the new model is necessarily two dimensional and (3) is replaced by a pair of couplednonlinear equations [7]. 7



It is convenient to work in a special (rotating) coordinate system centered on the centerof the earth. Letting V denote the tangential component of velocity for the unpoweredaircraft, the equations of motion aremdVdt = �FD �W sin �; mV 2rE = �FL +W cos � (10)where � denotes the climb angle, rE is the radial distance of the aircraft to the center ofthe earth (which we approximate by the radius of the earth),FL = 12 CL �AV 2; FD = 12 CD �AV 2;CL is the coe�cient of lift, and CD is the coe�cient of drag (see Figure 2).
Figure 2. Forces on an unpowered aircraftIn general, even for a parachute, the equations in (10) do not have a closed form solution.However, there exists a closed form solution in one remarkable case that models re-entryof the space shuttle into the earth 's atmosphere. We discuss this example in Section 5.5. Re-entry of the Space Shuttle. The following model provides a reasonably accu-rate model for a lifting body, such as the space shuttle on re-entry into the atmosphere,with a closed form solution. This remarkable example should be much better known tomathematicians and can easily be presented in a �rst course on di�erential equations.During much of the time during the space shuttle's re-entry, its velocity is approximatelyperpendicular to a line connecting the shuttle to the center of the earth, although at someinstants the angle is quite large. In this model we assume that this is the case for all time.It then follows from (10), using � = 0, that the tangential velocity V of the shuttle satis�esmdVdt = �FD; mV 2=rE = �FL +W; (11)8



where FL = lift force = CL �V 2A=2; FD = drag force = CD �V 2A=2; and rE =radius of the earth.For the space shuttle, it is reasonable to assume that CL � 0:5; CD � 0:5; A �372m2; and W=(ACL) � 100: Over the ight envelope of the space shuttle, the quantityFL=FD = CL=CD varies from about 1.0 to 1.8, and at high speeds it is roughly 1.0; forthis simple example we approximate it by the constant 1.0.We can rewrite (11) asFLW = 1�� VVC�2 and FDW = �dVdt .g;where VC = pgrE. Dividing these equations gives the single equationFDFL  1�� VVC�2! = �dVdt .g:Since FD=FL = CD=CL, we obtain the separable equation�dVVc1� (V 2V 2c )2 = CDgCLVc dt;which can be integrated to yield the closed form solutionV (t) = VC tanh��CDgCLVC t+ arctanh� V0VC��= VC tanh� �CDgCLpgrE t + arctanh� V0pgrE�� ; (12)where V (0) = V0. Actual space shuttle ight test data [5] show that the velocity predictedby this simple model is reasonably accurate even though it is based on many simplifyingassumptions.One can use (12) to estimate the maximum acceleration experienced by the space shuttleupon re-entry.6. Proof of the Pythagorean TheoremUsing Dimensional Analysis. We follow [1,p. 49] and give an insightful application of dimensional analysis to prove the Pythagoreantheorem.The area A of a right triangle is determined by its hypotenuse c and, for de�niteness,the lesser of the acute angles �: A = f(c; �). Since the units of area are the square ofunits of length, dimensional analysis gives A = c2g(�). The altitude perpendicular to thehypotenuse (see Figure 3) divides the basic triangle into two right triangles that are similarto it, and whose hypotenuses are the sides a and b of the original triangle. Their areasare A1 = a2g(�) and A2 = b2g(�). But A = A1 +A2, and thus c2g(�) = a2g(�) + b2g(�).Hence a2 + b2 = c2. 9



Figure 3: right triangle �7. Conclusion. We have discussed models of motion for objects with small Reynoldsnumbers (R < 1) and for large Reynolds numbers (R >� 100). It is quite di�cult tomodel the motion of most objects with Reynolds numbers in the intermediate range. Themodels we have discussed are quite popular with students and impress upon them, earlyin a di�erential equations course, the power of di�erential equations to model non-trivialphysical phenomena. We applaud the trend in the new generation of calculus and di�er-ential equations texts to discuss more physical and biological models, and to make modelbuilding a major focus of the course. However, textbook writers and instructors shouldstrive to present models based on correct physical or biological principles.8. Acknowledgements. The second author thanks Professor Joe Hammack for sev-eral enlightening discussions, Professor Carlos Felippa for providing a reference to the Pitheorem, Professor Howard Stone for his careful reading of a preliminary draft of this man-uscript and for providing many useful comments and insights, and the following skydivingexperts for their enthusiastic help: Gary Douris, George Galloway, Paul Koning, MichaelMathews, Colleen McGrath, Dan Poynter, and Jack Rumple.
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