Angular Momentum

Physics 1425 Lecture 21

A New Look for $\tau = I\alpha$

- We've seen how $\tau = I\alpha$ works for a body rotating about a fixed axis.
- $\tau = l\alpha$ is not true in general if the axis of rotation is *itself* accelerating
- BUT it IS true if the axis is through the CM, and isn't changing direction!
- This is quite tricky to prove—it's in the book
- And $\tau_{CM} = I_{CM}\alpha_{CM}$ is often useful, as we'll see.

Forces on Hoop Rolling Down Ramp

Take no slipping, so

$$v = R\omega$$
, $a = R\alpha$

Translational accn F = ma:

$$mg\sin\theta$$
 - F_{fr} = ma

• Rotational accn $\tau_{\text{CM}} = I_{\text{CM}} \alpha_{\text{CM}}$:

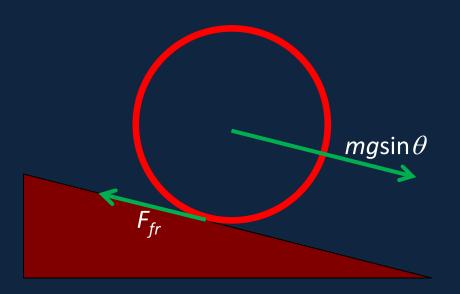
$$F_{fr}R = mR^2\alpha = mR\alpha$$

so
$$F_{fr} = ma$$
 and

$$mg\sin\theta = 2ma$$
,

• $a = (g\sin\theta)/2$:

the acceleration is one-half that of a sliding frictionless block—and independent of mass or radius.



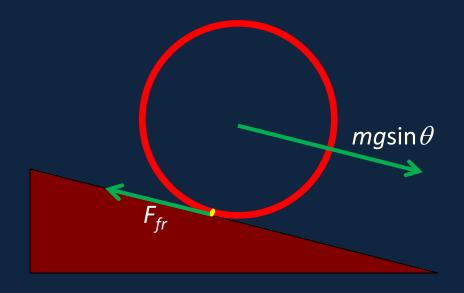
The only force having torque about the center of the hoop (its CM) is the frictional force: the total gravitational force and the normal force both act through the center.

Yet Another Look at That Hoop...

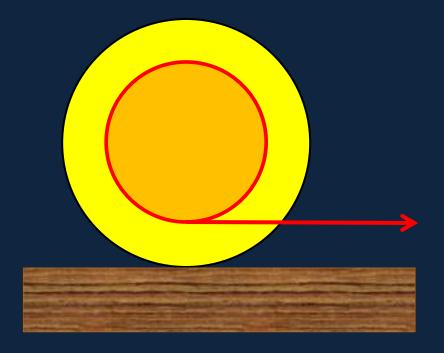
Take no slipping, so

$$v = R\omega$$
, $a = R\alpha$

- Since there's no slipping, the point on the hoop in contact with the ramp is momentarily at rest, and the hoop is rotating about that point.
- The only torque about that point is gravity— $\tau = mgR\sin\theta$
- The moment of inertia about that point, from the parallel axis theorem, is $I_{CM} + mR^2 = 2mR^2$, so $mgR\sin\theta = 2mR^2\alpha$, and $a = \alpha/R = (g\sin\theta)/2$.

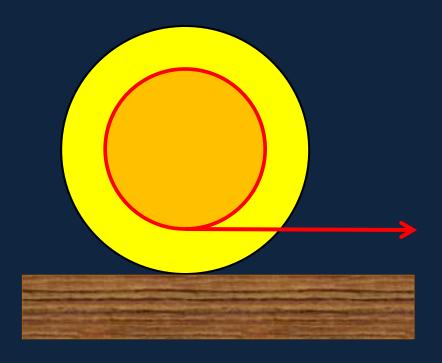


- A wooden yo-yo with red string rests on a table top.
 I pull the string horizontally from the bottom. What will the yo-yo do? (Assume ordinary smooth wood.)
- A. Roll towards me.
- B. Roll away from me.
- C. Slide towards me.



Clicker Answer

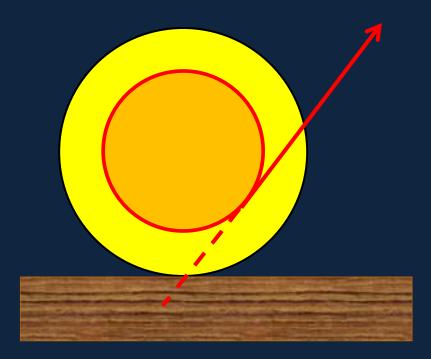
 A wooden yo-yo with red string rests on a table top.
I pull the string horizontally from the bottom. What will the yo-yo do? (Assume ordinary smooth wood.)



- A. Roll towards me.
- B. Roll away from me.
- C. Slide towards me.

The key is to measure torque about the stationary point of contact of the yo-yo with the table. Clearly the torque is clockwise!

 A wooden yo-yo with red string rests on a table top.
I pull the string along a line that passes through the point of contact. What will the yo-yo do? (Assume ordinary smooth wood.)



- A. Roll towards me.
- B. Roll away from me.
- C. Slide towards me.

Varying Moment of Inertia

- Recall Newton wrote his Second Law F = dp/dt, allowing m to vary as well as v.
- We should write the rotational version
- $\tau = d(I\omega)/dt$, and in fact varying l's are far more common than varying m's.



- Assume that when she pulls herself inwards, the angular velocity increases by a factor of 3.
- What happens to 1: total angular momentum and 2: rotational kinetic energy?
- A. No change, no change
- B. No change, x3 increase.
- C. x3 increase, x3 increase
- D. x3 increase, x9 increase

Torque as a Vector

- Suppose we have a wheel spinning about a fixed axis: then \(\vec{\alpha}\) always points along the axis—so \(\ldot{d\vec{\alpha}}\) \(\ldot{dt}\) points along the axis too.
- If we want to write a vector equation

$$\vec{\tau} = I\vec{\alpha} = Id\vec{\omega}/dt$$

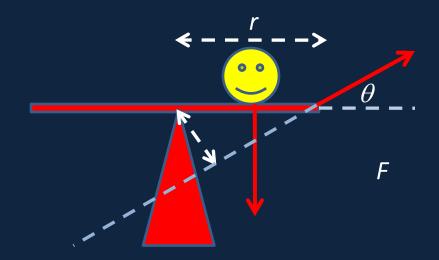
- it's clear that the vector $\vec{\tau}$ is parallel to the vector $d\vec{\omega}/dt$: so $\vec{\tau}$ points along the axis too!
- BUT this vector $\vec{\tau}$, is, remember made of two other vectors: the force \vec{F} and the place \vec{r} where it acts!

Recalling an Earlier Torque

Only the component of F
perpendicular to the arm
exerts torque

$$\tau = rF \sin \theta$$

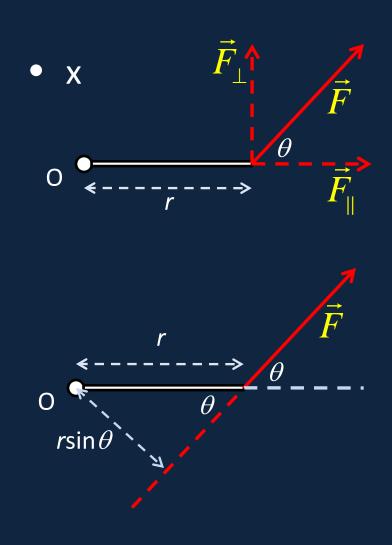
- We can see the direction of $\vec{\tau}$ is perpendicular to both \vec{F} , \vec{r} and towards us.
- We define the vector cross product $\vec{\tau} = \vec{r} \times \vec{F}$ to have this direction, and magnitude $rF \sin \theta$.



More Torque...

Expressing the force vector F as a sum of components \vec{F}_{\parallel} ("fperp") perpendicular to the lever arm and \vec{F}_{\parallel} parallel to the arm, it's clear that only \vec{F}_1 has leverage, that is, torque, about O. F_{\parallel} has magnitude $F\sin\theta$, so $\tau = rF\sin\theta$.

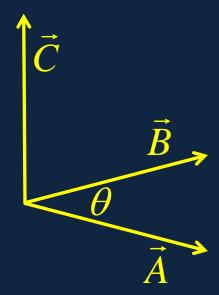
• Alternatively, keep \vec{F} and measure *its* lever arm about O: that's $r\sin\theta$.



Definition: The Vector Cross Product

$$\vec{C} = \vec{A} \times \vec{B}$$

- The magnitude C is $AB\sin\theta$, where θ is the angle between the vectors \vec{A}, \vec{B} .
- The direction of \vec{C} is perpendicular to both \vec{A} and \vec{B} , and is your right thumb direction if your curling fingers go from \vec{A} to \vec{B} .

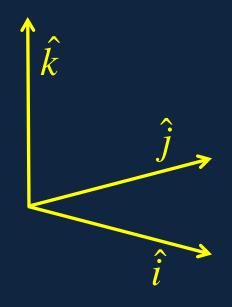


Assume \vec{A} , \vec{B} are nonzero vectors. Which pair of statements below is correct?

- A. The cross product depends on the order of the factors, and since both vectors are nonzero, it can never be zero.
- B. Depends on order, can be zero.
- C. Doesn't depend on order, cannot be zero.
- D. Doesn'tg depend on order, can be zero.

The Vector Cross Product in Components

• Recall we defined the unit vectors \hat{i} , \hat{j} , \hat{k} pointing along the x, y, z axes respectively, and a vector can be expressed as $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$



- Now $\hat{i} \times \hat{i} = 0$, $\hat{i} \times \hat{j} = \hat{k}$, $\hat{i} \times \hat{k} = -\hat{j}$,...
- So

$$\vec{A} \times \vec{B} = \left(A_x \hat{i} + A_y \hat{j} + A_z \hat{k} \right) \times \left(B_x \hat{i} + B_y \hat{j} + B_z \hat{k} \right)$$
$$= \hat{i} \left(A_y B_z - A_z B_y \right) + \dots$$