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Clicker Question
A uniform rod is free to rotate in a vertical plane about 
a frictionless hinge at one end.  It is released from rest 
at an angle of 30°.  (I = (1/3)ML2, τ = Mg(L/2)cos30°)
The initial downward acceleration of the free end of 
the rod is:

A.  equal to g

B.   greater than g

C.  less than g

30°



Clicker Answer
It’s greater than g! The moment of inertia about the 
hinge is (1/3)ML2, the torque is (MgL/2)cos30°,  so the  
acceleration is given by τ = Iα,   α = (3g/2L)cos30°,  the 
far end accelerates at Lα = (3g/2)cos30° >  g.         

Ball in cup video

Falling coins

30°

Mg

http://demolab.phys.virginia.edu/demos/pictures/1q2050.avi�
http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/fallingcoins.mov�


Rotational Kinetic Energy

• Imagine a rotating body as composed of many 
small masses mi at distances ri from the axis of 
rotation.

• The mass mi has speed v = ωri, so KE = ½miri
2ω2. 

• The total KE of the rotating body (assuming the 
axis is at rest) is
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Problem from Book

• 69. A 2.30-m-long pole is balanced vertically 
on its tip. It starts to fall and its lower end 
does not slip. What will be the speed of the 
upper end of the pole just before it hits the 
ground? [Hint: Use conservation of energy.]



Torque Power
• If a net torque τ is acting on a rotating body, the net 

power is the rate of change of rotational energy

• So the rate of working of the torque,
power = τω, its value x the angular velocity.

• Total work done over some time period is

• This is just like ∫Fdx in linear motion.
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Work Done by a Torque

• Suppose the torque is a force F
acting at a distance r from the 
center as shown.  If the disk 
turns through an angle dθ, the 
force acts through a distance 
ds = rdθ so does work Fds = 
Frdθ.

• But τ = rF, so the work

Fds = Frdθ = τdθ
Force x distance = torque x angle

• x

F

r
axle



A Familiar Item…

• A roll of toilet paper has diameter 0.1m, which 
happens also to be the length of one sheet.

• What is the angle in radians subtended at the central 
line of the roll by one sheet in the outside layer?

• A. 1

B.  2

C.  0.5

D.  π

E.  1/π

• J



A Familiar Item…

• A roll of toilet paper has diameter 0.1m, which 
happens also to be the length of one sheet.

• What is the angle in radians subtended at the central 
line of the roll by one sheet in the outside layer?

• It’s about 2 radians:

• J



On a Roll…
• This roll (0.1 m diameter, 0.1 m 

sheets) rolls across the table, 
unwinding three sheets per second. 

• Give its CM velocity, and the angular 
velocity about the CM in radians/sec.

A. 0.3, 6

B. 0.3, 3

C. 0.6, 6

D. 0.3, 3π

• a



On a Roll…
• This roll (0.1 m diameter, 0.1 m 

sheets) rolls across the table, 
unwinding three sheets per second. 

• Give its CM velocity, and the angular 
velocity about the CM in radians/sec.

A. 0.3, 6

B. 0.3, 3

C. 0.6, 6

D. 0.3, 3π

• a

Remember ω = vr, and 
three sheets in one 
second is 6 radians—
almost a complete 
revolution.



Clicker Question

• A hoop is rolling down a 
ramp (without slipping) 
at v m/sec.

• How fast is the point on 
the hoop furthest from 
the ramp moving?

• A.  v m/sec

• B.  2v m/sec

• C.  4v m/sec

• x



Hoop Rolling Down Ramp
• If there’s no slipping, the 

point on the hoop in contact 
with the ramp is at rest—the 
hoop is at that instant 
rotating about that point. 

• So if the center is moving at 
v, the “top” point is moving 
at 2v.

• Relative to the center,  all 
points are moving at speed
Rω tangentially.

• Hence, since the bottom’s at 
rest:       v = Rω

• The “no slip” condition.

• x

Velocities 
relative to 
ramp

Velocities relative to center of hoop 

ω

v

2v

Rω



Total Kinetic Energy of Rolling Hoop

• Suppose as usual the hoop is made of many 
small masses mi and the mass mi is moving at    .  
Then the total KE is                .

• This total kinetic energy depends on both the 
translational motion (the center of the hoop is 
moving) and the hoop’s rotation about the 
center.  

• How do we sort this out?
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Separating Translational and 
Rotational Kinetic Energies: Details

• Suppose we have rigid body we represent as a collection of 
masses mi, with individual velocities     .

• Let’s suppose the CM is moving at        , so the total linear 
momentum is            , M being the total mass.

• To separate out the rotational motion, we’ll write the individual 
velocities                           : so     is velocity of mi relative to the CM.

• Then the total kinetic energy is 

• Because relative to the CM 
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Total Energy: the Bottom Line

• In case the last slide was too much, what you 
really need is that the total kinetic energy of a 
moving, rotating object is a sum of two terms:

• Translational KE, the same as if all the mass is 
moving with the velocity of the center of 
mass, and

• Rotational KE, about the center of mass:
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How Fast Does a Hoop Roll Down a Ramp?
• Assuming no slipping, so 

v = Rω

• The total kinetic energy at an 
instant:

KE = ½mv2 + ½Iω2

= ½mv2 + ½(mR2)ω2

= mv2.

• If it’s rolled down through 
height h from a standing start, 

mv2 = mgh,  so v = √(gh)

• For a frictionless sliding mass, 

½mv2 = mgh,  so v = √(2gh): 
faster!

• x
v

The hoop takes longer to get down 
than a low-friction sliding block, 
because the same loss in potential 
energy has to supply BOTH
translational KE and rotational KE
for the hoop.



Ramp Race
A hoop, a solid cylinder and a solid sphere 
roll down the same ramp from a standing 
start.   Who clocks the fastest time?

A. The hoop

B. The solid cylinder

C. The solid sphere

D. It depends on the sizes and/or masses.



Ramp Race
A hoop, a solid cylinder and a solid sphere roll down 
the same ramp from a standing start.   Who clocks the 
fastest time?
The sphere wins: its mass is on average closer to the 
axis of rotation, so it has less rotational KE compared 
with translational KE.

A. The hoop

B. The solid cylinder

C. The solid sphere

D. It depends on the sizes and/or masses.
Note: for the sphere I = (2/5)mR2  solid cylinder  ½mR2, hoop mR2.



A New Look for τ = Iα

• We’ve seen how τ = Iα works for a body 
rotating about a fixed axis.

• τ = Iα is not true in general if the axis of 
rotation is itself accelerating

• BUT it IS true if the axis is through the CM, 
and isn’t changing direction!

• This is quite tricky to prove—it’s in the book

• And  τCM = ICMαCM is often useful, as we’ll see.
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