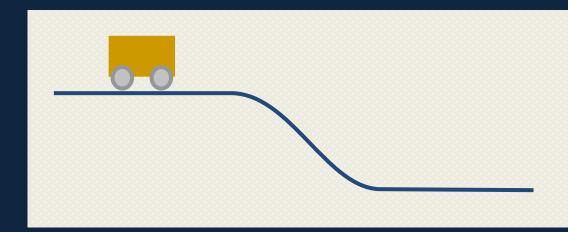
More Energy Topics

Physics 1425 Lecture 14

Michael Fowler, UVa

Topics for Today

- Overall Energy Conservation
- Gravitation and Escape Velocity
- Power
- Equilibrium


Overall Energy Conservation

- In the real world, there's lots of friction, air resistance, etc., so even for a well-designed roller coaster, mgh + ½mv² gradually goes down.
- Experimentally, loss of mechanical energy is invariably accompanied by the production of heat: and the amount of heat produced, properly measured, equals the mechanical energy lost.

ConcepTest 8.9 Cart on a Hill

A cart starting from rest rolls down a hill and at the bottom has a speed of 4 m/s. If the cart were given an initial push, so its initial speed at the top of the hill was 3 m/s, what would be its speed at the bottom?

- 1) 4 m/s
- 2) 5 m/s
- 3) 6 m/s
- 4) 7 m/s
- 5) 25 m/s

ConcepTest 8.9 Cart on a Hill

A cart starting from rest rolls down a hill and at the bottom has a speed of 4 m/s. If the cart were given an initial push, so its initial speed at the top of the hill was 3 m/s, what would be its speed at the bottom?

2

When starting from rest, the cart's PE is changed into KE: $\Delta PE = \Delta KE = \frac{1}{2}m(4)^2$ When starting from 3 m/s, the final KE is:

$$\frac{\text{KE}_{\text{f}}}{= \frac{1}{2}\text{m}(3)^{2} + \frac{1}{2}\text{m}(4)^{2}}$$

 $= \frac{1}{2}$ m(25)

m

Speed is not the same as kinetic energy

ConcepTest 8.10a Falling Leaves

You see a leaf falling to the ground with *constant speed*. When you first notice it, the leaf has initial total energy $PE_i + KE_i$. You watch the leaf until just before it hits the ground, at which point it has final total energy $PE_f + KE_f$. How do these total energies compare?

- 1) $PE_i + KE_i > PE_f + KE_f$
- 2) $PE_i + KE_i = PE_f + KE_f$
- 3) $PE_i + KE_i < PE_f + KE_f$
- 4) impossible to tell from
 - the information provided

ConcepTest 8.10a Falling Leaves

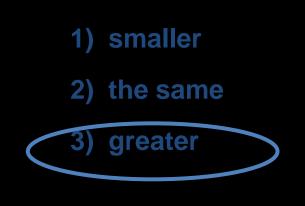
You see a leaf falling to the ground with *constant speed*. When you first notice it, the leaf has initial total energy $PE_i + KE_i$. You watch the leaf until just before it hits the ground, at which point it has final total energy $PE_f + KE_f$. How do these total energies compare?

1) $PE_i + KE_i > PE_f + KE_f$ 2) $PE_i + KE_i = PE_f + KE_f$

- 3) $PE_i + KE_i < PE_f + KE_f$
- 4) impossible to tell from the information provided

As the leaf falls, air resistance exerts a force on it opposite to its direction of motion. This force does negative work, which prevents the leaf from accelerating. This frictional force is a nonconservative force, so the leaf loses energy as it falls, and its final total energy is less than its initial total energy.

Follow-up: What happens to leaf's KE as it falls? What net work is done?


ConcepTest 8.10b Falling Balls

You throw a ball straight up into the air. In addition to *gravity*, the ball feels a force due to *air resistance*. Compared to the time it takes the ball to go up, the time it takes to come back down is:

- 1) smaller
- 2) the same
- 3) greater

ConcepTest 8.10b Falling Balls

You throw a ball straight up into the air. In addition to *gravity*, the ball feels a force due to *air resistance*. Compared to the time it takes the ball to go up, the time it takes to come back down is:

Due to air friction, the ball is continuously losing mechanical energy. Therefore it has less KE (and consequently a lower speed) on the way down. This means it will take more time on the way down !!

Follow-up: How does the force of air resistance compare to gravity when the ball reaches terminal velocity?

Heat is K.E. and P.E. of molecules

- Mechanical energy lost to air resistance almost all goes to speed up the air molecules.
- Friction transfers energy mainly to microscopic vibrations of the surface: think of the atoms and molecules as balls held together with springs (the bonds), the balls will gain kinetic energy, the springs potential energy.
- These molecular energies are random and disorganized—not so easy to utilize as macroscopic energy.

Clicker Question

Just FYI – not for credit!

What is the approximate average speed of the oxygen molecules in your nose right now?

- A. 5 cm/sec
- B. 50 cm/sec
- C. 5 m/sec
- D. 50 m/sec
- E. 500 m/sec

Other Kinds of Energy

- Electrical: electrostatic, magnetic, chemical (as in a charged battery). Unlike heat, energy properly stored electrically is almost fully recoverable.
- Electromagnetic radiation: light, heat, radio waves, etc., are all ways to transmit energy.
- Nuclear energy: energy stored in large nuclei during a star's explosion can be recovered.
- Bottom line: total energy is always conserved!

Gravitational Potential Energy...

0

 r_{E}

- ...on a bigger scale!
- For a mass *m* lifted to a point *r* from the Earth's center, far above the Earth's surface, the work done to lift it is

$$W = \int_{r_E}^r \frac{GMm}{r^2} dr = GMm \left(\frac{1}{r_E} - \frac{1}{r}\right).$$

• If $r = r_E + h$, with h small,

$$W = GMm \frac{r - r_E}{rr_E} \cong \frac{GMmh}{r_E^2} = mgh.$$

U(r) = -GMm/I

In astronomy, the custom is to take the zero of gravitational potential energy at infinity instead of at the Earth's surface.

Escape!

0

 r_{E}

 We've figured out the work needed to get *m* from here to *r*,

$$V = \int_{r_E}^r \frac{GMm}{r^2} dr = GMm \left(\frac{1}{r_E} - \frac{1}{r}\right)$$

and plotted the potential energy formula that comes from that:

U(r) = -GMm/r

A mass leaving r_E at v will get all the way—escape—if:

 $\frac{1}{2}mv_{\rm esc}^2 = GMm / r_E.$

U(r) = -GMm/r

In astronomy, the custom is to take the zero of gravitational potential energy at infinity instead of at the Earth's surface.

Escape Velocity and Orbital Velocity

We've shown that escape velocity, starting at the Earth's surface, is given by

$$\frac{1}{2}mv_{\rm esc}^2 = GMm / r_E.$$

• Recall that *orbital* velocity in a circular orbit just above the Earth's surface is given by

$$\frac{mv_{\text{orbit}}^2}{r_E} = \frac{GMm}{r_E^2}.$$

• It's easy to see that

$$v_{\rm esc}^2 = 2v_{\rm orbital}^2$$

• Escaping takes twice the energy needed to get into low orbit!

Power

- In physics, power means *rate of working*.
- Work is measured in joules, so power is measured in joules per second.
- The unit of work is the watt:

1 watt = 1 joule per second

- Another unit of power is the horsepower:
- 1 horsepower (1 hp) = 746 watts.
- Note: <u>electrical power</u> (more next semester)
- 1 kW = 1,000 watts, 1 kWh = 3,600,000 joules.

Clicker Question

Ordinary steps have height about 17cm. Suppose you walk upstairs at 3 steps per second, and you weigh 70kg. What is your approximate rate of working?

- A. 0.1 hpB. 0.25 hpC. 0.5 hp
- D. 1 hp

Clicker Question

An automobile weighing 2,000 kg accelerates on a level road from rest to 30 m/sec in 9 secs. Ignoring friction, etc., what was its average power output during this period?

- A. 50 hp
- B. 130 hp
- C. 180 hp
- D. 250 hp