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Center of Mass 
Let’s begin with two objects, say two children on a seesaw.  You already know that if one child weighs 

twice as much as the other, the seesaw will balance if the lighter child is twice as far from the center, 

the pivot point of the seesaw. The center of mass of the two children is the balance point—the center of 

the seesaw when it’s balanced.  It is not, as you might at first think, a point with half the mass on one 

side and half on the other, but the point about which the leverage of one mass, equals that of the other 

mass ( in the opposite direction).  It’s also referred to as the center of gravity.  It plays a big role in 

dynamics because, as we shall see, if several interacting bodies are moving around, the center of mass 

moves in a particularly simple way, and that can be a key to a better understanding of what’s going on. 

To be a little more formal, if we have two point masses m1, m2, on the x-axis at x1, x2 respectively, then 

the center of mass xcm is at the balance point, that is,  
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If we now add a third child to the seesaw and rebalanced, then taking the pivot point as the x-axis origin, 

the total leverage is zero 
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and if we don’t take it as the origin,  
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Evidently this expression can be generalized to any number of masses, so 
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Actually finding the center of mass of a system can be done in stages.  

Take the case of the three masses, for example. Let’s write the center of mass of m1, m2 as x12, and total 

mass m1 + m2 = m12.  Then the center of mass of m1, m2 and m3 is the same as the center of mass of m3 

at x3 and m12 at x12: 
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In fact, the formula for center of mass can be extended to an infinite number of masses, for example a 

continuous distribution of mass along the line: the sum will then become an integral.  

For example, suppose that a straight wire of variable thickness lies along the x-axis from 0 to L, and  it 

has mass  x dx in the interval between x and x + dx.  Its total mass is given by summing over all the 

intervals, that is,  
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and its center of mass, generalizing the formula for finite numbers of masses above, is 
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Center of Mass in Two or Three Dimensions 
The simplest possible case is to take three equal masses, let’s take them all equal to m kilograms.  We 

denote their positions by 
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.  Since 
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 lie on a line, we already know how to find their center of 

mass: it’s just the midpoint,  2 3 / 2r r
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, and their combined mass M = 2m.   

The next step is to find the center of mass of a mass 2m at  2 3 / 2r r
 

and a mass m at 
1r
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.  This is again 

two masses in a line (of course!) so the result is: 
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a nicely symmetrical result:  obviously it didn’t matter which two masses we chose to begin with.  
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The same analysis works for unequal masses, to give 
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and the generalization to more masses, and to a continuous mass distribution, is exactly as in one 

dimension, except that x is replaced by r


.  

Now we’re in more than one dimension, we can generalize the two children on a seesaw as follows: we 

can imagine two weights hung from a uniform beam, which is itself hung on a string: 

 

The point is that the vertical positioning of the weights, the y-coordinate, does not affect the question of 

balance (taking the string mass negligible): all that counts is the x-coordinate. 

It follows that for a collection of masses, or an irregular shape, hung from a string under gravity will 

come to rest with the center of mass (or gravity) directly below the point of suspension: 

m1 

m2 

x2 x1 

Balance if x1m1 + x2m2 = 0.   

(x1 is negative here.) 

Center of beam at x= 0 
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To see this, note that when it is freely hanging, suspended from a string at x = 0, we can imagine it 

divided into vertical strips, like that between x and x + dx, which will have mass m(x)dx, say, and 

leverage about the line of suspension of xm(x)dx. This means that the center of mass is somewhere on 

this line.  To find out where, we need to suspend the shape from some other point, find the vertical line 

through the new point of suspension, and find where they intersect. 

Significance of the Center of Mass in Dynamics 
Suppose we have a system of N masses, interacting with each other and also subject to external forces.  

If the total mass of the system is M,  
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and differentiating, 
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meaning the total momentum of the system is total mass  × velocity of the center of mass.  

Now, the rate of change of momentum for each mass is equal to the force acting on that mass.  But 

internal forces—forces between masses in the system—change the momenta of the pair of particles 

involved by equal and opposite amounts, so cannot affect the total momentum of the whole system.  
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This means the rate of change of the total momentum of the system equals the sum of the external 

forces acting on it.  

In particular, if the system initially has zero total momentum, and no external forces act, the center of 

mass will remain at rest:  if you walk from one end of a initially stationary boat to the other end, the 

center of mass of you plus the boat will not move, neglecting as usual tiny frictional effects from the 

water.  

The Center of Mass Frame of Reference 
Galileo was the first to spell out that the laws of physics are the same in a frame of reference moving at 

a steady velocity as in one at rest.  Of course, Newton’s laws hadn’t been invented at that point, the way 

he put it was that if you’re inside a big ship moving steadily, you can’t tell you’re moving by observing a 

ball you throw across the room, or liquid dripping from a bottle, or various other things—his point was 

that the Earth was probably moving, and you wouldn’t be able to tell. 

This invariance of the laws of physics is called Galilean invariance, and in fact generalizing this idea to 

include light led Einstein to the Theory of Relativity. 

It’s often helpful in analyzing collisions to look in the frame of reference in which the center of mass is at 

rest.  That’s because if there are no external forces, just the forces between the colliding objects, the 

center of mass remains at rest in that frame.  

For example, consider the case of two masses in one dimension undergoing elastic collision.  For 

visualization purposes, let’s suppose there is a light spring between them.  If the two masses are m1, m2, 

then in the center of mass frame they approach each other from opposite directions with velocities in 

inverse ratios to their masses—remember the total momentum is zero in the center of mass frame.  

Now, during the actual collision, when the spring is maximally compressed the masses are not moving 

relative to each other (otherwise the spring length would be changing).  But this means that in the 

center of mass frame, they’re not moving at all. Therefore, we can easily read off how much energy is 

stored in the spring at this point, it’s equal to the kinetic energy of the two masses in the center of mass 

frame before they collided.  

It’s also worth reviewing how they separate in this frame:  as the spring decompresses, it obviously goes 

through the identical force pattern on the masses that occurred on compression.  Therefore, each of the 

masses will be accelerated by the spring by exactly the same amount it was decelerated during 

compression.  This means that in the center of mass frame the masses will emerge from the collision 

with their velocities the exact reverse of those they went in with. 

Collisions in Two Dimensions 
As in one dimension,  it’s worth thinking in the center of mass frame, but this time the velocities are not 

reversed in general.  This becomes evident on considering two pool balls colliding—they come off at 

different angles depending on how they struck each other, head on, a glancing blow, or in between.  You 

should play around with the Collision Applet here.  
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A general point in analyzing these collisions is that it sometimes pays to work with vectors rather than 

immediately writing out the equations for components.  

For example, consider the case of a particle traveling at v


 hitting an identical particle at rest, and they 

fly apart at 
1 2,v v
 

.  The equations for momentum and energy conservation are 
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and it follows immediately from Pythagoras’ theorem that the two emerging velocities are at right 

angles to each other.  

If the masses are not equal, things are more complicated, but it’s still a good idea not to go to 

components right away.  Consider the case of the second particle having twice the mass:  
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