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Bernoulli's Picture 
Daniel Bernoulli, in 1738, was the first to understand air pressure from a molecular point of view. He 

drew a picture of a vertical cylinder, closed at the bottom, with a piston at the top, the piston having a 

weight on it, both piston and weight being supported by the air pressure inside the cylinder. He 

described what went on inside the cylinder as follows: “let the cavity contain very minute corpuscles, 

which are driven hither and thither with a very rapid motion; 

so that these corpuscles, when they strike against the piston 

and sustain it by their repeated impacts, form an elastic fluid 

which will expand of itself if the weight is removed or 

diminished…”  

(An applet is available here.)  Sad to report, his insight, 

although essentially correct, was not widely accepted. Most 

scientists believed that the molecules in a gas stayed more or 

less in place, repelling each other from a distance, held 

somehow in the ether . 

 

 

 

The Link between Molecular Energy and Pressure  

It is not difficult to extend Bernoulli’s picture to a quantitative description, relating the gas pressure to 

the molecular velocities. As a warm up exercise, let us consider a single perfectly elastic particle, of mass 

m, bouncing rapidly back and forth at speed v inside a narrow cylinder of length L with a piston at one 

end, so all motion is along the same line. (For the movie, click here!) What is the force on the piston? 

Obviously, the piston doesn’t feel a smooth continuous force, but a series of equally spaced impacts. 

However, if the piston is much heavier than the particle, this will have the same effect as a smooth force 

over times long compared with the interval between impacts. So what is the value of the equivalent 

smooth force?  

http://www.phy.ntnu.edu.tw/java/idealGas/idealGas.html
http://www.phys.virginia.edu/classes/109N/more_stuff/Applets/Piston/jarapplet.html
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Using Newton’s law in the form force = rate of change of 

momentum, we see that the particle’s momentum changes by 

2mv each time it hits the piston. The time between hits is 2L/v, 

so the frequency of hits is v/2L per second. This means that if 

there were no balancing force, by conservation of momentum 

the particle would cause the momentum of the piston to change 

by 2mvv/2L units in each second. This is the rate of change of 

momentum, and so must be equal to the balancing force, which 

is therefore F = mv2/L. 

We now generalize to the case of many particles bouncing 

around inside a rectangular box, of length L in the x-direction 

(which is along an edge of the box). The total force on the side of 

area A perpendicular to the x-direction is just a sum of single 

particle terms, the relevant velocity being the component of the 

velocity in the x-direction. The pressure is just the force per unit 

area, P = F/A. Of course, we don’t know what the velocities of 

the particles are in an actual gas, but it turns out that we don’t 

need the details. If we sum N contributions, one from each 

particle in the box, each contribution proportional to vx
2 for that 

particle, the sum just gives us N times the average value of vx
2. 

That is to say,  

2 2/ / /x xP F A Nmv LA Nmv V    

where there are N particles in a box of volume V.  Next we note that the particles are equally likely to be 

moving in any direction, so the average value of vx
2 must be the same as that of vy

2 or vz
2, and since v2 = 

vx
2 + vy

2 + vz
2, it follows that  

2 / 3 .P Nmv V  

This is a surprisingly simple result!  The macroscopic pressure of a gas relates directly to the average 

kinetic energy per molecule.  Of course, in the above we have not thought about possible complications 

caused by interactions between particles, but in fact for gases like air at room temperature these 

interactions are very small.  Furthermore, it is well established experimentally that most gases satisfy 

the Gas Law over a wide temperature range: 

PV = nRT 

for n moles of gas, that is, n = N/NA, with NA Avogadro’s number (NA = 6.02×1023 molecules per gram 

mole)and R the gas constant, R = 8.3 J/mol.K).  

v 

L 

1-D gas: particle bounces 

between ends of cylinder 
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Let’s go back to the contribution of one molecule:  introducing Boltzmann’s constant k = R/NA, it is easy 

to check from our result for the pressure and the ideal gas law that the average molecular kinetic energy 

is proportional to the absolute temperature,  

2 31
2 2

.KE mv kT   

Boltzmann’s constant k = 1.38.10-23 joules/K.  

Finding the Average Molecular Speed Without Knowing the Atomic Mass  
Just how fast are these molecules moving on average at room temperature?  Take another look at  

2 / 3 .P Nmv V  

Now Nm is the total mass of gas, and Nm/V  = ρ  is therefore the density (1.29 at 0°C, close to 1.2 at 

20°C):  so 
2 3 /v P  , and putting P = 105 N/m2  and  ρ = 1.2 kg/m3 gives 2 5 43 10 /1.2 25 10v     ,  

v about  500 meters per second.  (This does averages nitrogen and oxygen:  they don’t differ much, their 

mean square velocities are inversely proportional to their masses, ratio 14/16.)   

Note:  we didn’t need to know the mass or size of the molecules!  This average speed was figured out 

long before Avogadro’s number was known!  Maxwell came up with this distribution without knowing 

the size of molecules. 

Notice also that hydrogen molecules with a density roughly 0.083 kg/m3, will have an average speed of 

order 1900 m/sec.   

The Speed Distribution 
Maxwell proved that for a large number N of molecules, the likely number of molecules having speed 

between v and v+ dv  was  

2

3/2 3/2

2 /2 2 /( ) 4 4
2 2

mv kT E kTm m
f v dv v e dv v e dv

kT kT
 

 

    
    

   
. 

Here’s a graph: the blue curve is for room temperature, the red one for T/2 (in kelvins).   

(Note:  in these graphs, the most probably speed is of course at the peak of the curve—the root mean 

square velocity, however, is higher, because higher speeds contribute disproportionately to the root 

mean square.  You can easily convince yourself of this by finding the average, then the root mean 

square, of two numbers, like 1 and 2.) 
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Notice that the number of molecules having high energy drops off fast as the energy increases.  To 

understand this, think about how a particular molecule gets a high energy.  We now have to deviate 

from an ideal gas, and consider collisions. The average kinetic energy per molecule is of order kT, so 

when two molecules collide, energy transfer from one to the other is of this order of magnitude.  Now 

the collisions are random, so following one particular molecule, it’s just as likely to lose energy as it is to 

gain it.  This means that to get to a high energy, it must have had a series of lucky collisions, gaining on 

each one.  The chances of this are similar to the likelihood of getting a string of heads in a row on tossing 

a coin, which is 2-n for n tosses—another exponential decrease.  

Now these rare very fast molecules are very important for planetary science:  the gases in the 

atmosphere of a planet are those that can be held there by gravity for a long time, billions of years.  But 

a tiny percentage of the atmosphere’s molecules will sometimes be speeded up beyond escape velocity, 

and leave the planet.  The crucial question is:  how big is this tiny percentage?   Obviously, it depends on 

three things:  molecular mass, the temperature of the atmosphere, and the escape velocity.   The 

important temperature is that up at the edge of the atmosphere.  For Earth, that is about 1500°C, or 

1800K.  At that temperature, hydrogen will escape quickly, helium slowly, and oxygen and nitrogen will 

not escape for all practical purposes.  On the other hand, all of them will escape from the Moon.  

The dominant factor in the number of molecules having escape velocity is 
2 / 2escapemv kT

e


and in fact since 

2 31
2 2
mv kT  this factor can be written 

2 23 /2escapev v
e


where 2 2

rmsv v ,   using  vrms for the root mean 

square velocity at the gas temperature.  The average speed of nitrogen molecules at room temperature 

is about 500 m/sec, so at 1800K (possible upper atmosphere temperature) it would be around 1.2 

km/sec. But escape velocity is 11 km/sec, so the fraction is of order exp(125), no molecules will ever 

escape. For hydrogen, the same kinetic energy means the v2 is up be a factor of 14, so exp(125) 

becomes exp(9), about one part in eight thousand—the molecules will escape rapidly.  For helium, the 

factor is exp (-18), they will escape too, but more slowly. 

0

0.001

0.002

0.003

0 200 400 600 800 1000 1200

molecular speed in meters per sec


