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Today’s Topics 

• Maxwell’s equations 

• The speed of light 



Equations for Electricity and Magnetism 

• Gauss’ law for electric fields 

 

 

 the electric flux out of a volume = (charge inside)/0. 

• Gauss’ law for magnetic fields 

 

 

• There is no such thing as magnetic charge: magnetic 
field lines just circulate, so for any volume they flow 
out of, they flow back into it somewhere else.   

0/E dA q  

0B dA 



Equations for Electricity and Magnetism 

• Electrostatics:  (no changing fields) 

 
    around any closed curve: this means the work done against 

the electric field from A to B is independent of path, the 
field is conservative: a potential energy can be defined. 

 

• Faraday’s law of induction: in the presence of a changing 
magnetic field, the above equation becomes: 

 
    the integral is over an area “roofing” the path.  A changing  

magnetic flux through the loop induces an emf. 

0E d 

 / /BE d d dt B dA d dt       



Equations for Electricity and Magnetism 

• Mangnetostatics: 

 
    around any closed curve:  I  is the total current flow across 

any surface roofing the closed curve of integration. 

• But is this the whole story?   

• Fields changing in time changed the electrostatic equation, 
what about this magnetostatic equation? 

• Let’s look at a particular case… 

 

0B d I 



Spherical Current 

• At t = 0, a perfectly spherical ball of charge is 
placed at the center of a very large spherical 
conductor.  The charge flows away equally in 
all directions. What is the magnetic field 
generated? 

• 1) It points outwards equally in all directions 

• 2) Same but pointing inwards 

• 3) It circles around the initial sphere 

• 4) No magnetic field is produced by these 
currents 

 



Those Spherical Currents… 

• Cannot produce a magnetic field! 

 

• The configuration has perfect spherical 
symmetry—it would not be changed by 
turning it through an angle about any axis. 

• The only fields satisfying this would point in or 
out along radii everywhere—but that could 
only happen with a net magnetic charge (N or 
S) at the center.  So, no field at all… 



Ampère’s Law and Spherical Currents 

• Imagine in 3D currents flowing spherically 
outward symmetrically from a ball of 
charge injected into a large conducting 
medium. 

• Imagine a circular curve, like a crown, 
placed above the source. Clearly some of 
the current flows through a surface roofing 
this loop, so 0I is nonzero. 

• But                   around the loop, because the 
field B is zero everywhere! 

• So Ampère’s law is not the whole story…  

0B d 



Another Ampère’s Law Paradox  

• Suppose now a capacitor is 
being charged by a steady 
current in a wire.  

• Consider Ampère’s law for a 
circular contour   around 
the wire—it’s supposed to 
be the same for any surface 
S roofing the circle, but we 
could choose S2, going 
between the plates, so no 
current crosses it!  

I 

http://upload.wikimedia.org/wikipedia/commons/f/fd/Displacement_current_in_capacitor.svg


          Maxwell’s Solution  

• Maxwell knew Faraday had generalized the 
electrostatic law to include a time-varying magnetic 
field by adding the changing flux through the curve: 

 
• He noticed that when Ampère’s law failed, there was 

a time-varying electric field through the surface 
roofing the curve, and suggested including it like this: 

 

 

• (Writing                   , the electric flux.)  
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Why the Two Surfaces Give the Same Result  

• The current  I  flowing 
through surface S1 is the rate 
of change of charge on the 
top capacitor plate, I = dQ/dt. 

• If the plates are close, all the 
electric field from the top 
plate will point down, none 
will cross S1, so 

      and  
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Bottom line: the rate of change of electric 
flux through S2 = current through S1. 

I 

http://upload.wikimedia.org/wikipedia/commons/f/fd/Displacement_current_in_capacitor.svg


Ampère’s Law and Charge Conservation 

• Ampère’s law cannot work by 
itself for all surfaces spanning 
a circle like this: 

• The surface S2 is drawn to 
avoid the current.  This is only 
possible because charge is 
piling up. The rate of change 
of electric flux just equals   
times how fast the charge is 
piling up, from Gauss’ law. 

• This must equal the ingoing 
current—   

I 

01/ 

so the integral over S1 = that over S2. 

http://upload.wikimedia.org/wikipedia/commons/f/fd/Displacement_current_in_capacitor.svg


Maxwell’s Equations 

• The four equations that together give a 
complete description of electric and magnetic 
fields are known as Maxwell’s equations: 

 
0/E dA q   0B dA 

/BE d d dt   
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online notes 

Maxwell himself 
called this term the 
“displacement 
current”: it 
produces magnetic 
field like a current. 

http://galileoandeinstein.physics.virginia.edu/more_stuff/Maxwell_Eq.pdf


Magnetic Field In Charging Capacitor 

• Taking the field between plates 
uniform, use 

 

 

• For a disc surface between the 
plates, there is no current I through 
the surface, there is a changing 
electric field uniform over the area, 
generating a circular magnetic field. 

  

• For the total plate area,  

• . 
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Magnetic Field In Charging Capacitor 

• For the total area 

 

• For a disc of radius r, the total 
changing electric field is given by 

 

 

 

• Now use 

 

    to find                       between plates.   
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Charging Capacitor and Betatron 

• Recall that in the betatron a uniform magnetic 
field increasing in strength in time generated a 
circling electric field that could be used to 
accelerate charged particles. 

• In the charging capacitor we’ve been looking 
at, a uniform electric field increasing in 
strength in time generates a circling magnetic 
field. 

• In regions of space where there are no charges, 
changing electric and magnetic fields are 
related to each other in a very symmetric way. 



Clicker Question (Review) 

• Suppose you have an infinite uniform plane of 
electric charge.  What is its electric field? 

A. Parallel to the plane, of uniform strength.  

B. Parallel to the plane, decreasing strength 
with distance from the plane. 

C. Perpendicular to the plane, of uniform 
strength throughout space. 

D. Perpendicular to the plane, decreasing 
strength with distance from the plane. 



Clicker Answer 

• C: Perpendicular to the plane, of uniform 
strength throughout space. 

 

• An infinite  plane is of course an idealization: but 
for a uniform plane charge distribution of finite 
size, the electric field has very  close to uniform 
strength for distances from the plane less than 
the linear size of the charge distribution.  

 



Clicker Question 

• Suppose now the uniformly charged plane is 
set in motion with constant velocity. This 
means we have a plane of electric current. 

• The magnetic field generated by this current: 

A. Is perpendicular to the plane. 

B. Is parallel to the plane, and in the same 
direction as its velocity. 

C. Is parallel to the plane, and perpendicular to 
the velocity direction. 



Clicker Answer 

• Is parallel to the plane, and perpendicular to 
the velocity direction. 

• Remember the Biot Savart law: 

• The magnetic field from a small piece of 
current is perpendicular to the current 
direction—but in this moving plane, all 
current flow is in the same direction, so all 
fields are perpendicular to that direction.  
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Magnetostatic Field from a Sheet of Current 
(no net charge: current in metal sheet) 

• A large uniform sheet of 
electric current: think of it 
as many parallel close wires 
perpendicular to the screen, 
current flowing downwards, 
I amps per meter.  

• What is the magnetic field? 
There can be no perp field. 

• It’s OK to use Ampère’s law 
with rectangular contour, 
the enclosed current is IL. 

• . 

Infinite uniform 
current sheet: 
flows into screen 

B-field 

L 

B d IL  gives B = 0I/2.  



Switching on the Current Sheet 

• If the current sheet is 
suddenly switched on, in 
the first moments the 
magnetic field is only 
established close to the 
sheet. 

• We’ll assume it moves 
out like a tidal wave away 
from the sheet, at speed 
v, so at time t it extends 
out to vt, with nothing 
beyond. 

 

• . 

Infinite uniform 
current sheet: 
flows into screen 

B-field 

vt 

vt 

(No B-field out here yet.) 

(No B-field out here yet.) 



Ampère’s Law at Time t 

• This rectangular contour still 
includes current LI, but 
clearly                 .  

• What’s going on? 

• We know the correct 
equation is really 

 

• This will be correct only if 
there is also an electric field 
perpendicular to the loop, its 
flux increasing with time. 

• . 

B-field 

vt 

vt 

(No B-field out here yet.) 

(No B-field out here yet.) 

0B d 

0 0 0 /EB d LI d dt     



Ampère’s Law at Time t 

• As soon as the expanding 
magnetic field reaches our 
loop,                        and there 
can be no further change in 
the perpendicular electric 
field.  

• This means the electric field E 
is spreading right along with 
the magnetic field, at v, so  

                                    and from 

     we find for field strengths     

• . 

B-field 

vt 

vt 

(No B-field out here yet.) 

(No B-field out here yet.) 

0B d LI 

/ 2Ed dt EvL  0 0 00 /EB d LI d dt      
0 0 0/ 2B I vE   



Picturing the Fields… 

• The current sheet is in the 
xy-plane, current in the –x 
direction.  

• At time t after switch on, 
the fields will have reached 
vt as shown (we show one 
way—fields go –z too). 

• We haven’t yet used 

 
• What does that tell us? 

• . 
x 

y 

z 

Electric field 

vt 

Magnetic field 

 /E d d dt B dA    



Picturing the Fields… 

• So let’s look a 

 
• Take a rectangular contour, 

two sides parallel to the 
electric field, one side 
beyond v: the integral gives      
.        EL = vLB. 

• (we’re not worrying about 
sign—these are field 
amplitudes.) 

• . 

 /E d d dt B dA    
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Electric field 

vt 
L 

Magnetic field 



The Speed of Light 

• To summarize: for the outward traveling 
magnetic and electric fields from a switched-on 
current sheet, the equation 

 

    gives                                 . 

• The equation                                        gives E = vB. 

• They both give the ratio B/E— and that fixes v!  

0 0 0 /EB d LI d dt     
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The Speed of Light 

• This outgoing wave could have been made 
harmonic simply by oscillating the current in the 
sheet.  

• The wave’s outgoing speed is fully determined by 
0, which—remember—we defined as 4x10-7, and 
by 0, which is measured in electrostatic 
experiments.  

• But the speed is exactly that of light! 

• Maxwell concluded that light is an electromagnetic 
wave. 



The Electromagnetic Spectrum 

• The equations place no restriction on possible 
wavelengths of these electromagnetic waves. 
It follows that light, with wavelengths only 
between 400 nm and 750 nm, is a small part 
of a vast electromagnetic spectrum—see the 
next slide… 



http://en.wikipedia.org/wiki/File:EM_Spectrum_Properties_edit.svg

