Waves I

Physics 2415 Lecture 25

Michael Fowler, UVa

Today's Topics

- Dimensions
- Wave types: transverse and longitudinal
- Wave velocity using dimensions
- Harmonic waves

Dimensions

- There are three fundamental units in mechanics: those of mass, length and time.
- We denote the dimensions of these units by M, L and T.
- Acceleration has dimensions LT⁻² (as in m/sec², or mph per second—same for any unit system). Write this [a] = LT⁻².
- From F = ma, [F] = [ma] so [F] = MLT⁻².

Using Dimensions

- Example: period of a simple pendulum. What can it depend on?
- $[g] = LT^{-2}, [m] = m, [\ell] = L.$
- What combination of these variables has dimension just T? No place to include *m*, and we need to combine the others to eliminate L:
- $[g/\ell] = T^{-2}$, so $\sqrt{\ell/g}$ is the only possible choice.
- Dimensional analysis can't (of course) give dimensionless factors like 2π .

Dimensional Analysis: Mass on Spring

- From F = -kx,
 - $[k] = [F]/[x] = MLT^{-2}/L = MT^{-2}.$
- How does the period of oscillation depend on the spring constant k?
- The period has dimension T, the only variables we have are k and m, the only combination that gives dimension T is $\sqrt{m/k}$, so we conclude that $T \propto 1/\sqrt{k}$.

Waves on a String A simulation from the University of Colorado

Transverse and Longitudinal Waves

 The waves we've looked at on a taut string are transverse waves: notice the particles of string move up and down, perpendicular to the direction of progress of the wave.

 In a longitudinal wave, the particle motion is back and forth along the direction of the wave: an example is a <u>sound wave in air</u>.

Harmonic Waves

• A simple harmonic wave has sinusoidal form:

- For a string along the x-axis, this is local displacement in y-direction at some instant.
- For a <u>sound wave</u> traveling in the *x*-direction, this is local *x*-displacement at some instant.

Wave Velocity for String

- The wave velocity depends on string tension T, a force, having dimensions MLT⁻², and its mass per unit length μ , dimensions ML⁻¹.
- What combination of MLT⁻² and ML⁻¹ has dimensions of velocity, LT⁻¹?
- We get rid of M by dividing one by the other, and find $[T/\mu] = L^2T^{-2}$:
- In fact, $v = \sqrt{T / \mu}$ is <u>exactly correct</u>!
- This is partly luck—there could be a dimensionless factor, like the 2π for a pendulum.

Sound Wave Velocity in Air

- Sound waves in air are pressure waves. The obvious variables for dimensional analysis are the pressure [P] = [force/area] = MLT⁻²/L² = ML⁻¹T⁻² and density [ρ] = [mass/vol] = ML⁻³.
- Clearly $\sqrt{P/\rho}$ has the right dimensions, but detailed analysis proves

$$v = \sqrt{\partial P / \partial \rho} = \sqrt{\gamma P / \rho}$$

where $\gamma = 1.4$.

• This can also be written in terms of the bulk modulus $B = \rho \left(\frac{\partial P}{\partial \rho} \right)$, but that differentiation must be adiabatic—local heat generated by sound wave pressure has no time to spread, this isn't isothermal.

Traveling Wave

 Experimentally, a pulse traveling down a string under tension maintains its shape:

 $\boldsymbol{\chi}$

• Mathematically, this means the perpendicular displacement y stays the same function of x, but with an origin moving at velocity v: y = f(x,t) = f(x-vt)

So the white curve is the physical position of the string at time zero, the **red** curve is its position at later time **t**.

Traveling Harmonic Wave

 A sine wave of wavelength λ, amplitude A, traveling at velocity ν has displacement

Harmonic Wave Notation

 A sine wave of wavelength λ, amplitude A, traveling at velocity ν has displacement

$$y = A\sin\left(\frac{2\pi}{\lambda}(x - vt)\right)$$

- This is usually written $y = A \sin(kx \omega t)$, where the "wave number" $k = 2\pi / \lambda$ and $\omega = vk$.
- As the wave is passing, a single particle of string has simple harmonic motion with frequency ω radians/sec, or $f = \omega/2\pi$ Hz. Note that $v = \lambda f$