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The Electroscope 

• Charge detector 
invented by an English 
clergyman in 1787. Two 
very thin strips of gold 
leaf hang side by side 
from a conducting rod. 

• If a + charge is brought 
near, electrons move up 
the rod, leaving the two 
strips positively 
charged, so they repel 
each other. 

http://upload.wikimedia.org/wikipedia/commons/e/ec/Electroscope_showing_induction.png


Charging the Electroscope… 

• By conduction:  touch the top conductor with 
a positively charged object—this will leave it 
positively charged (electron deficient). 

• By induction:  while holding a positively 
charged object near, but not in contact, with 
the top, you touch the electroscope:  negative 
charge will flow from the ground, through 
you, to the electroscope. 



Coulomb’s Law 

• Coulomb measured the 
electrical force between 
charged spheres with 
apparatus exactly like 
Cavendish’s measurement of G:  
two spheres, like a dumbbell, 
suspended by a thin wire.  One 
sphere was charged, another 
charged sphere was brought 
close, the angle of twist of the 
wire measured the force. 

http://upload.wikimedia.org/wikipedia/commons/0/04/Bcoulomb.png


Coulomb’s Law 

• Coulomb discovered an 
inverse square law, like 
gravitation, except that 
of course like charges 
repelled each other.  The 
force acted along the 
line of centers, with 
magnitude proportional 
to the magnitudes of 
both charges: 
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Unit of Charge 

• We can’t make further progress until we define a 
unit of charge. 

• The SI unit is the Coulomb.  Its definition is not 
from electrostatics, but the SI unit current in a 
wire, one amp, is one coulomb per second 
passing a fixed point, and one amp is the current 
that exerts on an identical parallel current one 
meter away a magnetic force of one Newton per 
meter of wire. We’ll do all this later—just letting 
you know why we have this very large unit. 



Coulomb’s Law with Numbers 

• Experimentally, with r in 
meters and F in Newtons, it 
is found that k = 9x109. 

• This means that two 
charges each one 
millicoulomb   (10-3 C), one 
meter apart, repel with a 
force of 9,000N, about one 
ton weight! 
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Atomic Electrostatics 

• The simplest (Bohr) model of the hydrogen 
atom has an electron circling a proton at a 
distance of about 0.5x10-10 m. 

• The electron charge has been determined 
experimentally to be about -1.6x10-19 C. 

• This means the electrostatic force holding the 
electron in orbit 

 

    is about 10-7N. 
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Atomic Dynamics 

• The electrostatic force holding the electron in 
orbit 

 

    is about 10-7N. 

• The electron has mass about 10-30 kg, so its 
acceleration is about 1023 m/s2.  

• This is v2/r, from which v is about 2x106 m/s, 
around 1% of the speed of light.  
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Superposition 

• The total electric force on a charge Q3 from 
two charges Q1, Q2 is the vector sum of the 
forces from the charges found separately.  
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Sounds trivial—but superposition isn’t true for nuclear forces! 



The Electric Field 

• The electric field           at a point     is defined 
by stipulating that the electric force    on a tiny 
test charge     at     is given by             . 

 

• Strictly speaking, the test charge should be 
vanishingly small: the problem is that if  the electric 
field arises in part from charges on conductors, 
introducing the test charge could cause them to 
move around and thus change the field you’re trying 
to measure.  
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Field from Two Equal Charges 

• Two charges Q are placed on the y-axis, equal distances d 
from the origin up and down. What is the electric field at a 
point P on the x-axis, and where is its maximum value? 

 

 

 

 

 

 

 

• Anywhere on the axis, the field is along the axis, and has value 
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Field on the Axis of a Uniform Ring of Charge 

• Imagine the ring, radius a, total charge Q, to be made up of 
pairs dQ of oppositely placed charges: 

 

 

 

 

 

 

 

 

• From the previous slide, adding contributions from all pairs,  
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Visualizing the Electric Field 

• For a single point 
charge, we can easily 
draw vectors at various 
points indicating the 
strength of the field 
there: 

• a 



Visualizing the Electric Field 

• A standard approach is to 
draw lines of force: lines 
that at every point indicate 
the field direction there.  

• These lines do not 
immediately give the field 
strength, but their density 
can give a qualitative 
indication of where the 
field is stronger, provided 
they are continuous. 

• a 



Field from a Uniform Line of Charge 

• What’s the electric field at a 
point P distance R from a very 
long line of charge, say      C/m? 

• Take the wire along the z-axis in 
3D Cartesian coordinates,we’ll 
find the field at a point P, 
distance R from the wire, in the 
(x,y) plane. 

•  The strategy is to find the field         
z     from a bit dz of the wire, 
then do an integral over the 
whole wire.            
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Field from a Uniform Line of Charge 

• The strategy is to find the field         
z     from a bit dz of the wire, then 
do an integral over the whole 
wire. 

 

 

• For an infinite wire, the net field 
must be directly away from the 
wire, so multiply by             and 

integrate over all z :  
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Electric Field from a Line of Charge: 
Top View 

• It looks just like the field from a 
point charge: but isn’t! 

• Remember that for a point 
charge Q, the magnitude of 
field at distance R is kQ/R2, for a 
line charge with density    , the 
field strength is                :  so 
the “density of lines” in these 
2D plots can’t relate directly to 
field strength for both cases.   

• (Actually, if we could draw the 
lines in 3D, the density would 
relate directly to field strength.) 
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Electric Field from a Plane of Charge: Top View 
Note: if you can’t follow this, it doesn’t matter! 

• Imagine now we have a 
uniformly charged plane: we 
make it up of many parallel 
wires, each charge density     ,      
each perpendicular to the page, 
with n wires/meter. 

• Remembering the field strength 
from a single wire is               , 
and in dy there are ndy wires,  
the field strength at P from the 
charge in dy is: 
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Electric Field from a Plane of Charge: Top View 

• We’ve shown the field strength at P 
from the charged lines in dy is 

 

 

• This has component in the OP 
direction 

 

The total field is given by integrating, 

 

 

 

where the plane charge density                 
Coulombs/m2 , and 

• Notice the field strength is constant!    
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Note:  the next slide is all you need to know—and it’s simple! 



Electric Field from a Plane of Charge 

• It’s worth drawing the field 
lines to emphasize that the 
electric field from a 
uniformly charged plane is 
directly outward from the 
plane. 

• For a finite plane of charge, 
this is a good approximation 
for distances from the plane 
small compared to the 
plane’s extent.   
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Field for Two Oppositely Charged Planes 

• a 

+ = 

Superpose the field lines from the negatively charged plate on the parallel positively 
charged one, and you’ll see the total field is double in the space between the plates, 
but exactly zero outside the plates. 
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