Newton's Laws

Physics 1425 lecture 6

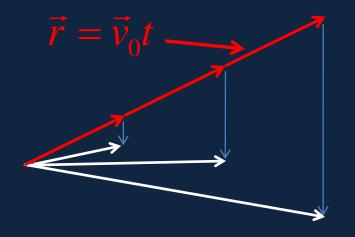
Michael Fowler, UVa.

Newton Extended Galileo's Picture of Motion to Include Forces

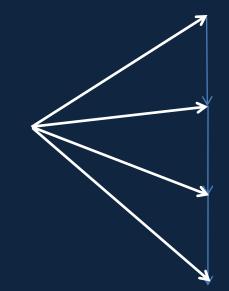
Galileo said:

- Natural horizontal motion is at constant velocity unless a force acts: a push from behind will cause acceleration, friction will cause negative acceleration (that is, deceleration).
- Natural vertical motion is constant downward acceleration...

Newton Said They're the Same Thing!


 The "natural vertical motion" is at constant acceleration because there's a constant force acting – the force of gravity!

 Without that force, vertical motion would be at constant velocity.


• Look again at the path of a projectile: without gravity, it would be a straight line.

Vector Picture of Projectile Motion

$$\vec{r} = \vec{v}_0 t - \frac{1}{2} \vec{g} t^2$$

Position at 1 second intervals (notice it falls below straight line: the g =0 trajectory).

Velocities and Speeds at 1 second intervals.

Newton's First Law of Motion

 Newton's First Law is that an object continues to move at constant velocity unless acted on by external forces.

- Unlike Galileo's horizontal motion law, this applies for motion in any direction.
- (This was hard to accept, because forces were considered to arise only from contact, a push or pull, and this "force of gravity" seemed magical.)

Relating Change in Velocity to Force

- This can *only* be done **experimentally**: Newton did many experiments.
- Care must be taken to make sure forces like friction, etc., are negligibly small.
- Take two objects made of the same material (iron, say) one twice the volume of the other, apply the same force.
- The one with twice the stuff accelerates at half the rate.

Force and Acceleration I

- Many experiments lead to the conclusion that a given force (such as a spring extended by a measured amount) accelerates an object in the direction of the force at a rate inversely proportional to the "amount of stuff" in the object.
- This amount of stuff is called the mass, or inertial mass, of the object: it measures the object's resistance to being accelerated: the object's inertia. It is denoted by *m*.

Force and Acceleration II

 It is also found that doubling the force (pulling with two identical springs, for example) doubles the acceleration.

- The bottom line is:
- 1. Acceleration is proportional to applied force (and of course in the same direction).
- 2. Acceleration is *inversely* proportional to mass.

Units for Force

- We already have a unit for mass, the kg, and acceleration, m/s².
- We define the magnitude of the unit force as that force which accelerates one kilogram at one meter per second per second.

• This unit force is one Newton.

Newton's Second Law

• The relation between force, mass and acceleration can now be written:

 $\vec{F} = m\vec{a}$

where the magnitude of the force *F* is measured in Newtons, the mass is in kilograms and the acceleration is in meters per second per second.

• This is Newton's Second Law.

FMeans **Total** Force!

- Newton's Second Law, F = ma gives the acceleration of a body of mass m acted on by a total force \overline{F} .
- Air resistance and friction contribute nonzero forces, which might or might not be small.
- A car accelerating along a road is also being acted on by gravity—but that is usually cancelled out by the upward force of support from the road, called the normal force.

Inertial Frames of Reference

- Recall a frame of reference is a set of axes, like three perpendicular rulers, to measure position, plus a clock to track time, so motion can be precisely described.
- An inertial frame is one in which Newton's First Law is obeyed.
- If frame A is inertial, and frame B is moving at constant velocity relative to frame A, then frame B is also inertial.

Relative Velocity and Inertial Frames

- If a body is moving at constant velocity \vec{v}_B in frame B, and frame B is moving at constant velocity \vec{v} relative to frame A, then the body is moving at constant velocity $\vec{v}_A = \vec{v} + \vec{v}_B$ relative to frame A.
- For constant velocity v of frame B relative to frame A, the acceleration of a body measured in frame A equals its acceleration in frame B:

$$\frac{d\vec{v}_A}{dt} = \frac{d\vec{v}}{dt} + \frac{d\vec{v}_B}{dt} = \frac{d\vec{v}_B}{dt}$$

Relative Acceleration and Noninertial Frames

- If frame A is inertial, and frame B is accelerating with respect to frame A, then frame B is noninertial.
- Examples: inside an accelerating car; on a rotating carousel.
- A body in an accelerating car will only stay at rest relative to the car if acted on by some force (the seat, for example).

Newton's Third Law

 If two bodies interact, the force on B from A is equal in magnitude to the force on A from B, and opposite in direction :

$$\vec{F}_{AB} = -\vec{F}_{BA}$$

In the example shown here, the glove suffers a force exactly equal in magnitude to that felt by the face.

Action and Reaction

- Newton's Third Law is often stated as "action equals reaction".
- The action is body A pushing on body B.
- The reaction is the inevitable opposite force: B pushing back on A.

Very Important! The action and the reaction *always* act on different bodies!

More Action and Reaction...

- If a car and a truck collide, the force of the truck on the car equals the force of the car on the truck...
- BUT an equal force on a smaller object will have a different result!

http://www.massachusettsinjurylawyerblog.com/car-accident.jpg

And here's another example, with masses about equal ...

Clicker Question

If I jump upwards, I leave the ground with nonzero upward velocity—I accelerated upwards. Applying $\vec{F} = m\vec{a}$, what force caused that upwards acceleration?

- A. The force of my leg muscles
- B. The force of my pressure on the floor
- C. The reaction force from the floor