Motion in Two and Three Dimensions: Vectors

Physics 1425 Lecture 4

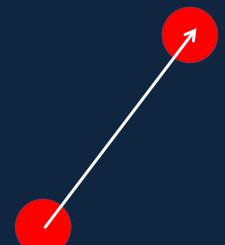
Michael Fowler, UVa

Today's Topics

- In the previous lecture, we analyzed the motion of a particle moving vertically under gravity.
- In this lecture and the next, we'll generalize to the case of a particle moving in two or three dimensions under gravity, like a projectile.
- First we must generalize displacement, velocity and acceleration to two and three dimensions: these generalizations are vectors.

Displacement

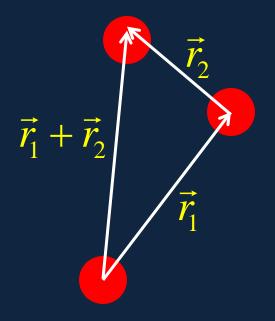
- We'll work usually in two dimensions—the three dimensional description is very similar.
- Suppose we move a ball from point A to point B on a tabletop. This displacement can be fully described by giving a distance and a direction.



- Both can be represented by an arrow, the length some agreed scale: arrow length 10 cm representing 1 m displacement, say.
- This is a vector, written with an arrow \vec{r} : it has magnitude, meaning its length, written $|\vec{r}|$, and direction.

Displacement as a Vector

- Now move the ball a second time. It is evident that the total displacement, the sum of the two, called the resultant, is given by adding the two vectors tip to tail as shown:
- Adding displacement vectors (and notation!):



Adding Vectors

You can see that

 $\vec{r}_1 + \vec{r}_2 = \vec{r}_2 + \vec{r}_1.$

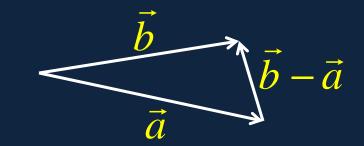
- The vector *r*₁ represents a displacement, like saying walk 3 meters in a north-east direction: it works from any starting point.
- \vec{r}_1 \vec{r}_2 \vec{r}_1 \vec{r}_2 \vec{r}_1

Adding vectors :

Subtracting Vectors

- It's pretty easy: just ask, what vector has to be added to \vec{a} to get \vec{b} ?
- The answer must be $\vec{b} \vec{a}$
- To construct it, put the tails of \vec{a} , \vec{b} together, and draw the vector from the head of \vec{a} to the head of \vec{b} .

Finding the difference:



Multiplying Vectors by Numbers

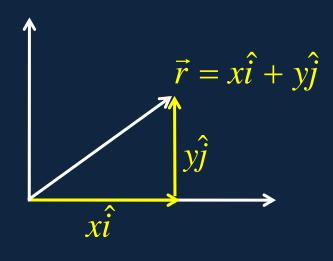
Only the length changes: the direction stays the same.

Multiplying and adding or subtracting:

Vector Components

- Vectors can be related to the more familiar Cartesian coordinates (x, y) of a point P in a plane: suppose P is reached from the origin by a displacement r.
- Then *r* can be written as the sum of successive displacements in the *x*- and *y*-directions:
- These are called the components of \vec{r} .

Define *i*, *j* to be vectors of unit length parallel to the *x*, *y* axes respectively. The components are *xi*, *yj*.



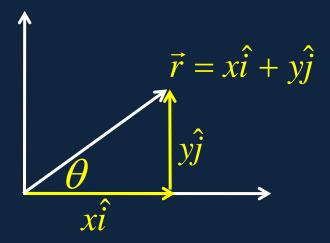
How \vec{r} Relates to (x, y)

• The length (magnitude) of \vec{r} is

$$\left|\vec{r}\right| = \sqrt{x^2 + y^2}$$

The angle between the vector and the *x*-axis is given by:

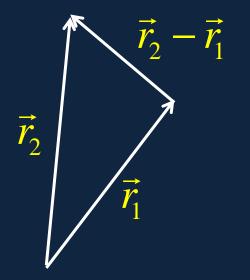
$$\tan\theta = \frac{y}{x}.$$



Average Velocity in Two Dimensions average velocity = displacement/time

In moving from point $\vec{r_1}$ to $\vec{r_2}$, the average velocity is in the direction $\vec{r_2} - \vec{r_1}$:





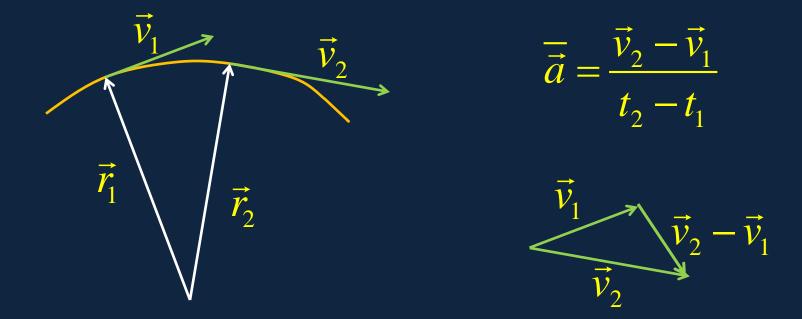
Instantaneous Velocity in Two Dimensions

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$$

• Note: $\Delta \vec{r}$ is small, but that doesn't mean \vec{v} has to be small— Δt is small too! Defined as the average velocity over a vanishingly small time interval : points in direction of motion at that instant:

Average Acceleration in Two Dimensions

• Car moving along curving road:



Note that the velocity vectors *tails* must be together to find the difference between them.

Instantaneous Acceleration in Two Dimensions

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d \vec{v}}{dt}$$

$$\vec{v_1}$$

 $\vec{v_2} \Delta \vec{v}$

Acceleration in Vector Components

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt} \left(\frac{d\vec{r}}{dt}\right) = \frac{d^2\vec{r}}{dt^2}$$

Writing
$$\vec{a} = (a_x, a_y), \ \vec{r} = (x, y)$$
 and matching:

$$a_x = \frac{d^2 x}{dt^2}, \quad a_y = \frac{d^2 y}{dt^2}$$

as you would expect from the one-dimensional case.

Clicker Question

A car is moving around a circular track at a constant speed. What can you say about its acceleration?

- A. It's along the track
- B. It's outwards, away from the center of the circle
- C. It's inwards
- D. There is no acceleration

Relative Velocity Running Across a Ship

- A cruise ship is going north at 4 m/s through still water.
- You jog at 3 m/s directly across the ship from one side to the other.

• What is your velocity *relative to the water*?

Relative Velocities Just Add...

• If the ship's velocity relative to the water is \vec{v}_1

• And your velocity relative to the ship is \vec{v}_2

• Then your velocity relative to the water is

$$\vec{v}_1 + \vec{v}_2$$

• Hint: think how far you are *displaced* in one second!