Newton’s Laws

Physics 1425 lecture 6
Newton Extended Galileo’s Picture of Motion to Include Forces

Galileo said:

• Natural horizontal motion is at constant velocity unless a force acts: a push from behind will cause acceleration, friction will cause negative acceleration (that is, deceleration).

• Natural vertical motion is constant downward acceleration...
Newton Said They’re the Same Thing!

• The “natural vertical motion” is at constant acceleration because there’s a constant force acting – the force of gravity!

• Without that force, vertical motion would be at constant velocity.

• Look again at the path of a projectile: without gravity, it would be a straight line.
Vector Picture of Projectile Motion

\[\vec{r} = \vec{v}_0 t - \frac{1}{2} \vec{g} t^2 \]

Position at 1 second intervals (notice it falls below straight line: the \(g = 0 \) trajectory).

Velocities and Speeds at 1 second intervals.
Newton’s First Law of Motion

- Newton’s First Law is that an object continues to move at constant velocity unless acted on by external forces.

- Unlike Galileo’s horizontal motion law, this applies for motion in any direction.

- (This was hard to accept, because forces were considered to arise only from contact, a push or pull, and this “force of gravity” seemed magical.)
Relating Change in Velocity to Force

• This can only be done experimentally: Newton did many experiments.
• Care must be taken to make sure forces like friction, etc., are negligibly small.

 • Take two objects made of the same material (iron, say) one twice the volume of the other, apply the same force.
 • The one with twice the stuff accelerates at half the rate.
Force and Acceleration I

• Many experiments lead to the conclusion that a given force (such as a spring extended by a measured amount) accelerates an object in the direction of the force at a rate inversely proportional to the “amount of stuff” in the object.

• This amount of stuff is called the mass, or inertial mass, of the object: it measures the object’s resistance to being accelerated: the object’s inertia. It is denoted by \(m \).
• It is also found that doubling the force (pulling with two identical springs, for example) doubles the acceleration.

• The bottom line is:
 1. Acceleration is proportional to applied force (and of course in the same direction).
 2. Acceleration is *inversely* proportional to mass.
Units for Force

• We already have a unit for mass, the kg, and acceleration, m/s\(^2\).

• We define the magnitude of the unit force as that force which accelerates one kilogram at one meter per second per second.

• This unit force is one Newton.
Newton’s Second Law

• The relation between force, mass and acceleration can now be written:

\[\vec{F} = m\vec{a} \]

where the magnitude of the force F is measured in Newtons, the mass is in kilograms and the acceleration is in meters per second per second.

• This is Newton’s Second Law.
\(\vec{F} \) Means \textit{Total} Force!

- Newton’s Second Law, \(\vec{F} = ma \) gives the acceleration of a body of mass \(m \) acted on by a total force \(\vec{F} \).

- Air resistance and friction contribute nonzero forces, which might or might not be small.

- A car accelerating along a road is also being acted on by gravity—but that is usually cancelled out by the upward force of support from the road, called the \textit{normal} force.
Inertial Frames of Reference

• Recall a frame of reference is a set of axes, like three perpendicular rulers, to measure position, plus a clock to track time, so motion can be precisely described.

• An inertial frame is one in which Newton’s First Law is obeyed.

• If frame A is inertial, and frame B is moving at constant velocity relative to frame A, then frame B is also inertial.
Relative Velocity and Inertial Frames

• If a body is moving at constant velocity \(\vec{v}_B \) in frame B, and frame B is moving at constant velocity \(\vec{v} \) relative to frame A, then the body is moving at constant velocity \(\vec{v}_A = \vec{v} + \vec{v}_B \) relative to frame A.

• For constant velocity \(\vec{v} \) of frame B relative to frame A, the acceleration of a body measured in frame A equals its acceleration in frame B:

\[
\frac{d\vec{v}_A}{dt} = \frac{d\vec{v}}{dt} + \frac{d\vec{v}_B}{dt} = \frac{d\vec{v}_B}{dt}
\]
Relative Acceleration and Noninertial Frames

• If frame A is inertial, and frame B is accelerating with respect to frame A, then frame B is noninertial.

• Examples: inside an accelerating car; on a rotating carousel.

• A body in an accelerating car will only stay at rest relative to the car if acted on by some force (the seat, for example).
Newton’s Third Law

- If two bodies interact, the force on B from A is equal in magnitude to the force on A from B, and opposite in direction:

\[\vec{F}_{AB} = -\vec{F}_{BA} \]

In the example shown here, the glove suffers a force exactly equal in magnitude to that felt by the face.

http://startswithabang.com/?p=1718
Newton’s Third Law is often stated as “action equals reaction”.

The action is body A pushing on body B.

The reaction is the inevitable opposite force: B pushing back on A.

Very Important! The action and the reaction always act on different bodies!
More Action and Reaction...

• If a car and a truck collide, the force of the truck on the car equals the force of the car on the truck...

• BUT an equal force on a smaller object will have a different result!

http://www.massachusettsinjurylawyerblog.com/car-accident.jpg

And here's another example, with masses about equal...
If I jump upwards, I leave the ground with nonzero upward velocity—I accelerated upwards. Applying $\vec{F} = ma$, what force caused that upwards acceleration?

A. The force of my leg muscles
B. The force of my pressure on the floor
C. The reaction force force from the floor